scholarly journals Contents of Amino Acids in Grains of Different Bread Wheat Genotypes

2013 ◽  
Vol 14 (3) ◽  
pp. 431 ◽  
Author(s):  
Desimir Knežević ◽  
Dijana Mihajlović ◽  
Danijela Kondić

This paper analyzes 10 different genotypes of the bread wheat by method of chromatography to identify the presence of free amino acids. The contents of the identified amino acids have been determined by spectrophotometric method. The results of the qualitative analysis showed the great deal of variability in the amino acid composition for each of the examined genotypes. Quantitative analysis of the free amino acids in the grains indicated their high content (over the 100 mg ml-1) in wheat genotypes San Pastore, Becker, Lihnida and Ana Morava, while their lowermost content was in the genotypes Uras (73 mg ml-1) and Jawa (75 mg ml-1). By using chromatography in the examined wheat grains have been determined that the most present amino acids were glutamic acid, glycine, sarcosine, valine, norvaline and tryptophan. The most present of all examined amino acids was glutamic acid, which was identified in nine examined wheat genotypes. The highest content of glumatic acid was found in wheat genotype Uras (6,52 mg ml-1). Among the essential amino acids has been found the highest content of norvalin (2,56 mg ml-1) and valin (2,32 mg ml-1). The wheat grains of the genotypes Becker, San Pastore and Ana Morava had the largest number of the determined essential amino acids (five), indicating their high nutritional value.

1966 ◽  
Vol 101 (3) ◽  
pp. 591-597 ◽  
Author(s):  
R M O'Neal ◽  
R E Koeppe ◽  
E I Williams

1. Free glutamic acid, aspartic acid, glutamic acid from glutamine and, in some instances, the glutamic acid from glutathione and the aspartic acid from N-acetyl-aspartic acid were isolated from the brains of sheep and assayed for radioactivity after intravenous injection of [2-(14)C]glucose, [1-(14)C]acetate, [1-(14)C]butyrate or [2-(14)C]propionate. These brain components were also isolated and analysed from rats that had been given [2-(14)C]propionate. The results indicate that, as in rat brain, glucose is by far the best precursor of the free amino acids of sheep brain. 2. Degradation of the glutamate of brain yielded labelling patterns consistent with the proposal that the major route of pyruvate metabolism in brain is via acetyl-CoA, and that the short-chain fatty acids enter the brain without prior metabolism by other tissue and are metabolized in brain via the tricarboxylic acid cycle. 3. When labelled glucose was used as a precursor, glutamate always had a higher specific activity than glutamine; when labelled fatty acids were used, the reverse was true. These findings add support and complexity to the concept of the metabolic; compartmentation' of the free amino acids of brain. 4. The results from experiments with labelled propionate strongly suggest that brain metabolizes propionate via succinate and that this metabolic route may be a limited but important source of dicarboxylic acids in the brain.


PEDIATRICS ◽  
1984 ◽  
Vol 73 (6) ◽  
pp. 879-879
Author(s):  
T. A. TEDESCO ◽  
S. A. BENFORD ◽  
R. C. FOSTER ◽  
L. A. BARNESS

To the Editor.— Currently accepted dietary management of citrullinemia and other urea cycle disorders includes protein restriction, sodium benzoate, and dietary supplements of keto acids or essential amino acids with postblock intermediates such as arginine in citrullinemia and arginino-succinic aciduria. When a child survives the neonatal period on such a regimen and solid foods are introduced into the diet, there is at least one fruit that should be avoided, Citrullus Vulgaris, commonly known as watermelon. Quantitation of free amino acids extracted from 1 g wet weight of watermelon fruit yielded the following (in mmoles per gram wet weight): Phenylalanine, 1.25; histidine, 0.24; tryptophan, 0.35; lysine, 0.82; ornithine, 0.32; arginine, 11.36; aspartic acid, 0.97; threonine, 0.74; serine, 1.05; glutamine, 3.86; glutamic acid, 1.38; citrulline, 23.68; alanine, 1.15; valine, 0.17; isoleucine, 1.24; leucine, 0.24.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1637
Author(s):  
Quintino Reis de Araujo ◽  
Guilherme Amorim Homem de Abreu Loureiro ◽  
Cid Edson Mendonça Póvoas ◽  
Douglas Steinmacher ◽  
Stephane Sacramento de Almeida ◽  
...  

Free amino acids in cacao beans are important precursors to the aroma and flavor of chocolate. In this research, we used inferential and explanatory statistical techniques to verify the effect of different edaphic crop conditions on the free amino acid profile of PH-16 dry cacao beans. The decreasing order of free amino acids in PH-16 dry cacao beans is leucine, phenylalanine, glutamic acid, alanine, asparagine, tyrosine, gamma-aminobutyric acid, valine, isoleucine, glutamine, lysine, aspartic acid, serine, tryptophan, threonine, glycine. With the exception of lysine, no other free amino acid showed a significant difference between means of different edaphic conditions under the ANOVA F-test. The hydrophobic free amino acids provided the largest contribution to the explained variance with 58.01% of the first dimension of the principal component analysis. Glutamic acid stands out in the second dimension with 13.09%. Due to the stability of the biochemical profile of free amino acids in this clonal variety, it is recommended that cacao producers consider the genotype as the primary source of variation in the quality of cacao beans and ultimately the chocolate to be produced.


1970 ◽  
Vol 21 (5) ◽  
pp. 723 ◽  
Author(s):  
J Leibholz

Crossbred wethers were given a control diet (8 g nitrogen, 730 g dry matter daily) or a low nitrogen diet (0.5 g nitrogen, 520 g dry matter daily) or starved, for a 12 or 20 day experimental period. The concentrations of free serine, glutamine, glycine, alanine, histidine, and arginine in the plasma of the starved sheep decreased significantly while the concentrations of lysine, 3-methylhistidine, and isoleucine increased significantly. The ratio of essential to non-essential amino acids increased from 0.35 to 0.56 in the starved sheep. In sheep on the low nitrogen diet, the ratio of essential to non-essential amino acids in the plasma decreased from 0.40 to 0.27, with significant increases in the concentrations of glutanlic acid, glutamine, glycine, isoleucine, leucine, and 3-methylhistidine. Starvation and the low nitrogen diet both resulted in a reduction of the plasma urea concentrations. Starvation and the low nitrogen diet resulted in a 20-50 % reduction in the flow of saliva and a 40-78% increase in the concentration of total nitrogen. This resulted in no significant change in the daily secretion of nitrogen in the saliva. The concentration of urea in the saliva was increased by 3-54%. The concentrations of individual free amino acids in saliva are reported. The nitrogen content of the rumen was reduced, and after 7 days of starvation or on the low nitrogen diet all rumen nitrogen could be attributed to ammonia and free �-amino nitrogen.


1979 ◽  
Vol 56 (5) ◽  
pp. 427-432 ◽  
Author(s):  
P. Möller ◽  
J. Bergström ◽  
S. Eriksson ◽  
P. Fürst ◽  
K. Hellström

1. The concentrations of electrolytes and free amino acids in plasma and the quadriceps femoris muscle were studied in ten apparently healthy elderly men, 52–77 years of age. The results were compared with those previously recorded for men 20–36 years old. 2. The two groups of subjects did not differ with regard to serum electrolytes and intracellular water content but the extracellular water in the older subjects exceeded that of the younger group by about 50%. The muscle specimens of the elderly men were also characterized by a 40% elevation of their total contents of Na+ and Cl−, whereas the content of K+ and Mg2+ was almost identical in both groups. 3. The means recorded for the plasma concentrations of most amino acids tended to be higher in the elderly men. The differences reached statistical significance for tyrosine, histidine, valine, lysine and total essential amino acids. In keeping with the findings in plasma, the amino acid concentrations in the muscle of the older group tended to exceed those of the younger ones. The difference reached statistical significance with regard to total amino acids, essential and non-essential amino acids, aspartate, alanine, citrulline, histidine, arginine, leucine and lysine. The various mechanisms that may contribute to these findings are discussed.


1978 ◽  
Vol 29 (1) ◽  
pp. 145 ◽  
Author(s):  
H Dove

Jugular blood samples were obtained from 10.5 kg and 28 kg lambs receiving a diet of reconstituted cows' whole milk. The lambs were then given diets in which the proportion of essential amino acids (BAA) in the dietary crude protein was altered over a wide range. A second blood sample was taken after lambs had received such diets for 12 days. Plasma obtained from these samples was analysed for free amino acids, urea and ammonia. The pattern of plasma free amino acids (PFAA) in lambs given reconstituted cows' whole milk is described. In both the pre-treatment and post-treatment samples, the heavier lambs appeared to have lower plasma levels of all EAA, and high plasma levels of glycine, serine, urea and ammonia. In the lighter lambs, there were pronounced responses of PFAA levels to changes in the dietary proportion of EAA. At low proportions, the levels of most EAA in plasma were low. Lysine and phenylalanine were exceptions. In addition, levels of many non-essential amino acids (non-EAA), particularly serine and glycine, were high. At high proportions of EAA, plasma levels of all EAA, especially methionine, rose markedly. Within the non-EAA, serine, proline and glycine were reduced, while taurine and cystathionine increased. In the plasma of the heavier lambs, the response of some amino acids to a given dietary change differed from the response in the lighter lambs. This was especially true of methionine, tyrosine, phenylalanine and arginine. There was also marked between-animal variation in plasma levels. When expressed as molar proportions of total PFAA, results were similar to those of the lighter lambs. There was a pronounced similarity between the response of the PFAA to diets with a low proportion of EAA, and the PFAA pattern characteristic of developing kwashiorkor. __________________ *Part II, Aust. J. Agric. Res., 28, 933 (1977).


1975 ◽  
Vol 21 (3) ◽  
pp. 414-417 ◽  
Author(s):  
Yasuyuki Doi ◽  
Akikatsu Kataura

Abstract Free amino acids in the tonsils of 20 individuals were measured column chromatographically. Those always found in readily detectable amounts included O-phosphoserine, taurine, O-phosphoethanolamine, aspartic acid, hydroxyproline, threonine, serine, glutamic acid, proline, glycine, alanine, α-amino-n-butyric acid, valine, cystine, methionine, isoleucine, leucine, tyrosine, phenylalanine, ornithine, γ-amino-butyric acid, lysine, histidine, and arginine. Results were compared for three clinical pathological groups and for four age groups. Some abnormal values may result from the pathological conditions.


1977 ◽  
Vol 44 (2) ◽  
pp. 309-317 ◽  
Author(s):  
B. A. Law

SummaryOf 8 strains ofStreptococcus cremoristested, 5 grew almost as well in defined media in which various essential amino acids were supplied in dipeptides as they did in media containing the equivalent free amino acids. The remainder grew poorly or not at all in the peptide-containing media. Growth of peptide-utilizing strains was inhibited by also including structurally-related dipeptides in the medium, presumably due to competition for uptake by transport system carriers. Both types of starters produced cell-free dipeptidases recoverable from the medium of exponential phase cultures. Addition of the partly-purified extracellular dipeptidases to dipeptidecontaining test media initiated growth in strains unable to use peptides.Str. lactisgrew in defined peptide media, but the further addition of structurally-related dipeptides did not inhibit growth, either bcause each dipeptide was transported by a specific carrier or because peptides were hydrolysed extracellularly. The presence of cell-bound extracellular dipeptidase was indicated by the hydrolysis of dipeptides with washed whole cells in buffer. This was not observed withStr. cremorisstrains.


1978 ◽  
Vol 54 (1) ◽  
pp. 51-60 ◽  
Author(s):  
J. Bergström ◽  
P. Fürst ◽  
L.-O. Norée ◽  
E. Vinnars

1. Free amino acids were determined in the plasma and in the muscle tissue of 14 patients with chronic uraemia; eight were not on dialysis and six were having regular peritoneal dialysis. The concentration of each amino acid in muscle water was calculated with the chloride method. 2. In both groups of patients there were low intracellular concentrations of threonine, valine, tyrosine and carnosine, and high glycine/valine and phenylalanine/tyrosine ratios. Both groups of patients had increased amounts of 1- and 3-methylhistidine in plasma and in muscle water. 3. The non-dialysed patients had low intracellular concentrations of lysine, and the dialysed patients had high intracellular concentrations of lysine, isoleucine, leucine and of some of the non-essential amino acids. 4. After peritoneal dialysis for 22 h, the plasma concentration of several amino acids decreased but the intracellular concentrations of most amino acids did not change significantly. 5. Intravenous administration of essential amino acids and histidine during the last 4 h of dialysis increased in muscle the total free amino acids, the ratio of essential to non-essential amino acids and the valine and phenylalanine concentrations. 6. The results demonstrated that the plasma and muscle concentrations of several amino acids are grossly abnormal in chronic uraemia. Non-dialysed and dialysed patients exhibit important differences, especially in the intracellular amino acid patterns. Infusion of essential amino acids may result in enhancement of protein synthesis.


1996 ◽  
Vol 2 (5) ◽  
pp. 335-339 ◽  
Author(s):  
F.C. Ibáñez ◽  
A.I. Ordóñez ◽  
M.S. Vicente ◽  
M.I. Torres ◽  
Y. Barcina

Idiazábal cheeses were made employing brining times of 12 h (batch A) and 36 h (batch B). Proteolytic changes in both batches were examined over 270 d of ripening; proteolysis was low in both batches, but lower in batch B than in batch A. Electrophoretic analysis revealed incom plete breakdown of αs and β-caseins at the end of the ripening period, particularly in batch B. The proportion of soluble nitrogen as a percentage of total nitrogen was 17.55% in batch B and 19.48% in batch A, while the proportion of non-protein nitrogen was 11.78% in batch B and 15.16% in batch A. The proportion of non-protein nitrogen as a percentage of soluble nitrogen was 67.17% in batch B and 77.88% in batch A. The free amino acids, the smallest non-protein nitrogen frac tion, attained values of 1203 mg/100 g of dry matter in batch B and 1902 mg/100 g of dry matter in batch A. After 60 d of ripening, the main free amino acids were glutamic acid, valine, leucine, lysine, and phenylalanine in both batches, although levels were higher in the batch with the shorter brining time. There was no clear trend in the non-protein-forming amino acids with either ripening time or brining time.


Sign in / Sign up

Export Citation Format

Share Document