Inclusion and commitment as key pathways between leadership and nonprofit performance

2019 ◽  
Vol 30 (1) ◽  
pp. 31-49 ◽  
Author(s):  
Kim C. Brimhall

2020 ◽  
Vol 21 (15) ◽  
pp. 1666-1673 ◽  
Author(s):  
Yuanyang Dong ◽  
Jiaqi Lei ◽  
Bingkun Zhang

Background: The prevalence of inflammatory bowel disease is rapidly increasing around the world. Quercetin is a flavonoid commonly found in vegetables and fruits and has been reported to exert numerous pharmacological activities such as enhancing antioxidant capacity or suppressing inflammation. Objective: We aimed to explore whether quercetin was effective for IBD and the underlying mechanism of quercetin for the ameliorative effects on the DSS-induced colitis in mice. Methods: Thirty-six mice were randomly assigned to three treatments, including the control group (Ctr), DSS-induced colitis group (DSS) and DSS-induced colitis supplemented with 500 ppm quercetin (DQ500). Colitis was induced by DSS intake, and body weight was recorded every day. After six days administration of DSS, intestinal permeability was measured, and the liver was taken for antioxidant enzyme tests. Colonic tissue was taken for the histopathlogical score and RNA-sequencing analysis. Results: In this experiment, dietary quercetin for 500ppm alleviated the DSS-induced colitis, possibly by strengthening intestinal integrity, liver antioxidant capacity. Based on the results of the transcriptome of colon tissue, several key genes were modulated by quercetin. ERK1/2-FKBP pathway and RXR-STAT3 pathway were involved in the development of IBD, furthermore, in the down-regulation of S100a8/9, FBN2 contributed to lowering the risk of colongenesis. Conclusion: We demonstrated that dietary quercetin alleviated the DSS-induced colitis in mice. This is most likely due to its beneficial effects on intestinal integrity and modulation of several key pathways. Based on our research, quercetin was a promising candidate for IBD and its pharmaceutical effects on both IBD and colongenesis need further research.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Laura Bryan ◽  
Michael Henry ◽  
Ronan M. Kelly ◽  
Christopher C. Frye ◽  
Matthew D. Osborne ◽  
...  

Abstract Background The ability to achieve high peak viable cell density earlier in CHO cell culture and maintain an extended cell viability throughout the production process is highly desirable to increase recombinant protein yields, reduce host cell impurities for downstream processing and reduce the cost of goods. In this study we implemented label-free LC-MS/MS proteomic profiling of IgG4 producing CHO cell lines throughout the duration of the cell culture to identify differentially expressed (DE) proteins and intracellular pathways associated with the high peak viable cell density (VCD) and extended culture VCD phenotypes. Results We identified key pathways in DNA replication, mitotic cell cycle and evasion of p53 mediated apoptosis in high peak VCD clonally derived cell lines (CDCLs). ER to Golgi vesicle mediated transport was found to be highly expressed in extended culture VCD CDCLs while networks involving endocytosis and oxidative stress response were significantly downregulated. Conclusion This investigation highlights key pathways for targeted engineering to generate desirable CHO cell phenotypes for biotherapeutic production.



Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 341
Author(s):  
Lei Zhang ◽  
Haoyun Sun ◽  
Tao Xu ◽  
Tianye Shi ◽  
Zongyun Li ◽  
...  

Eggplant is one of the most important vegetables worldwide. Prickles on the leaves, stems and fruit calyxes of eggplant may cause difficulties during cultivation, harvesting and transportation, and therefore is an undesirable agronomic trait. However, limited knowledge about molecular mechanisms of prickle morphogenesis has hindered the genetic improvement of eggplant. In this study, we performed the phenotypic characterization and transcriptome analysis on prickly and prickleless eggplant genotypes to understand prickle development at the morphological and molecular levels. Morphological analysis revealed that eggplant prickles were multicellular, lignified and layered organs. Comparative transcriptome analysis identified key pathways and hub genes involved in the cell cycle as well as flavonoid biosynthetic, photosynthetic, and hormone metabolic processes during prickle development. Interestingly, genes associated with flavonoid biosynthesis were up-regulated in developing prickles, and genes associated with photosynthesis were down-regulated in developing and matured prickles. It was also noteworthy that several development-related transcription factors such as bHLH, C2H2, MYB, TCP and WRKY were specifically down- or up-regulated in developing prickles. Furthermore, four genes were found to be differentially expressed within the Pl locus interval. This study provides new insights into the regulatory molecular mechanisms underlying prickle morphogenesis in eggplant, and the genes identified might be exploited in breeding programs to develop prickleless eggplant cultivars.



2021 ◽  
Vol 1 (1) ◽  
pp. 39-54
Author(s):  
Jinyu Zhang ◽  
Stella C. Ogbu ◽  
Phillip R. Musich ◽  
Douglas P. Thewke ◽  
Zhiqiang Yao ◽  
...  

Atherosclerosis is a chronic progressive condition in which the wall of the artery develops abnormalities and causes thickening of the blood vessels. The development of atherosclerosis is a complex process characterized by vascular inflammation and the growth of atherosclerotic plaques that eventually lead to compromised blood flow. The endothelial to mesenchymal transition (EndMT) is a phenomenon whereby endothelial cells lose their endothelial properties and acquire a mesenchymal phenotype similar to myofibroblast and smooth muscle cells. This process is considered a key contributor to the development and, importantly, the progression of atherosclerosis. Thus, therapeutically targeting the EndMT will provide a broad strategy to attenuate the development of atherosclerosis. Here, we review our current knowledge of EndMT in atherosclerosis including several key pathways such as hypoxia, TGF-β signaling, inflammation, and environmental factors during the development of atherosclerosis. In addition, we discuss several transgenic mouse models for studying atherosclerosis. Taken together, rapidly accelerating knowledge and continued studies promise further progress in preventing this common chronic disease.



2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Fatemeh Khodabandehloo ◽  
Sara Taleahmad ◽  
Reza Aflatoonian ◽  
Farzad Rajaei ◽  
Zahra Zandieh ◽  
...  

Abstract Background Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells that can differentiate into three lineages. They are suitable sources for cell-based therapy and regenerative medicine applications. This study aims to evaluate the hub genes and key pathways of differentially expressed genes (DEGs) related to osteogenesis by bioinformatics analysis in three different days. The DEGs were derived from the three different days compared with day 0. Results Gene expression profiles of GSE37558 were obtained from the Gene Expression Omnibus (GEO) database. A total of 4076 DEGs were acquired on days 8, 12, and 25. Gene ontology (GO) enrichment analysis showed that the non-canonical Wnt signaling pathway and lipopolysaccharide (LPS)-mediated signaling pathway were commonly upregulated DEGs for all 3 days. KEGG pathway analysis indicated that the PI3K-Akt and focal adhesion were also commonly upregulated DEGs for all 3 days. Ten hub genes were identified by CytoHubba on days 8, 12, and 25. Then, we focused on the association of these hub genes with the Wnt pathways that had been enriched from the protein-protein interaction (PPI) by the Cytoscape plugin MCODE. Conclusions These findings suggested further insights into the roles of the PI3K/AKT and Wnt pathways and their association with osteogenesis. In addition, the stem cell microenvironment via growth factors, extracellular matrix (ECM), IGF1, IGF2, LPS, and Wnt most likely affect osteogenesis by PI3K/AKT.





2012 ◽  
Vol 39 (12) ◽  
pp. 10881-10887 ◽  
Author(s):  
Bin Zhang ◽  
Cuiping Xia ◽  
Qunfeng Lin ◽  
Jie Huang


2012 ◽  
Vol 49 (3) ◽  
pp. R149-R156 ◽  
Author(s):  
Jaume Folch ◽  
Ignacio Pedrós ◽  
Iván Patraca ◽  
Francesc Sureda ◽  
Fèlix Junyent ◽  
...  

Leptin (Lep), an adipose-derived hormone, exerts very important functions in the body mainly on energy storage and availability. The physiological effects of Lep controlling the body weight and suppressing appetite are mediated by the long form of Lep receptor in the hypothalamus. Lep receptor activates several downstream molecules involved in key pathways related to cell survival such as STAT3, PI3K, MAPK, AMPK, CDK5 and GSK3β. Collectively, these pathways act in a coordinated manner and form a network that is fully involved in Lep physiological response. Although the major interest in Lep is related to its role in the regulation of energy balance, and since resistance to Lep affects is the primary risk factor for obesity, the interest on their effects on brain cognition and neuroprotection is increasing. Thus, Lep and Lep mimetic compounds now await and deserve systematic exploration as the orchestrator of protective responses in the nervous system. Moreover, Lep might promote the activation of a cognitive process that may retard or even partially reverse selected aspects of Alzheimer's disease or ageing memory loss.



Sign in / Sign up

Export Citation Format

Share Document