Association mapping of soybean seed germination under salt stress

2015 ◽  
Vol 290 (6) ◽  
pp. 2147-2162 ◽  
Author(s):  
Guizhen Kan ◽  
Wei Zhang ◽  
Wenming Yang ◽  
Deyuan Ma ◽  
Dan Zhang ◽  
...  
2011 ◽  
Vol 3 (3) ◽  
pp. 126-129 ◽  
Author(s):  
Zahra RASTEGAR ◽  
Mohammad SEDGHI ◽  
Saeid KHOMARI


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1473
Author(s):  
Zlatica Mamlic ◽  
Ivana Maksimovic ◽  
Petar Canak ◽  
Goran Mamlic ◽  
Vojin Djukic ◽  
...  

Soybean production in the system of organic agriculture is not very demanding, and this has been well documented both through experimental results and commercial production. However, one of the biggest problems in organic production is the lack of adequate pre-sowing treatments. Therefore, the aim of this study was to examine the effect of the electrostatic field. This is a physical treatment that was first used for seed treatment in the 18th century but has mostly been neglected since then. Seeds of five soybean genotypes with differently colored seed coats (yellow, green, dark green, brown, and black) were included in this study. The seeds were exposed to different values of direct current (DC) with the following voltages: 0 V (control), 3 V, 6 V, and 9 V, to which the seeds were exposed for 0 min (control), 1 min, and 3 min. After exposing the seeds to the electric field, the physiological properties of seeds and seedlings at the first stage of growth were evaluated. The results show that the effect of the electrostatic field on seed quality depends on the genotype, voltage, and exposure time. The application of DC can be a suitable method for improving seed germination and the initial growth of soybean seedlings. In addition, the results indicate that it is necessary to adjust the DC treatment (voltage and duration of exposure of seeds) to particular genotypes since inadequate treatments may reduce the quality of seeds.


2020 ◽  
pp. 1-9
Author(s):  
Nidia H. Montechiarini ◽  
Luciana Delgado ◽  
Eligio N. Morandi ◽  
Néstor J. Carrillo ◽  
Carlos O. Gosparini

Abstract During soybean seed germination, the expansive growth potential of the embryonic axes is driven by water uptake while cell wall loosening occurs in cells from the elongation zone (EZ). Expansins are regarded as primary promoters of cell wall remodelling in all plant expansion processes, with the expression profiles of the soybean expansins supporting their cell or tissue specificity. Therefore, we used embryonic axes isolated from whole seed and focused on the EZ to study seed germination. Using a suite of degenerate primers, we amplified an abundantly expressed expansin gene at the EZ during soybean embryonic axis germination, which was identified as EXP1 by in silico analyses. Expression studies showed that EXP1 was induced under germination conditions in distilled water and down-regulated by abscisic acid (ABA), which inhibits soybean germination by physiologically restraining expansion. Moreover, we also identified a time window of ABA responsiveness within the first 6 h of incubation in water, after which ABA lost control of both EXP1 expression and embryonic axis germination, thus confirming the early role of EXP1 in the EZ during this process. By contrast, EXP1 levels in the EZ increased even when germination was impaired by osmotically limiting the water availability required to develop the embryonic axes’ growth potential. We propose that these higher EXP1 levels are involved in the fast germination of soybean embryonic axes as soon as water availability is re-established. Taken together, our results show strong EXP1 expression in the EZ and postulate EXP1 as a target candidate for soybean seed germination control.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 903
Author(s):  
Wenrui Gao ◽  
Yan Liu ◽  
Juan Huang ◽  
Yaqiu Chen ◽  
Chen Chen ◽  
...  

Seed germination is an important phase transitional period of angiosperm plants during which seeds are highly sensitive to different environmental conditions. Although seed germination is under the regulation of salicylic acid (SA) and other hormones, the molecular mechanism underlying these regulations remains mysterious. In this study, we determined the expression of SA methyl esterase (MES) family genes during seed germination. We found that MES7 expression decreases significantly in imbibed seeds, and the dysfunction of MES7 decreases SA content. Furthermore, MES7 reduces and promotes seed germination under normal and salt stress conditions, respectively. The application of SA restores the seed germination deficiencies of mes7 mutants under different conditions. Taking together, our observations uncover a MeSA hydrolytic enzyme, MES7, regulates seed germination via altering SA titer under normal and abiotic stress conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245505
Author(s):  
Xiaofei Chen ◽  
Ruidong Zhang ◽  
Yifan Xing ◽  
Bing Jiang ◽  
Bang Li ◽  
...  

Sorghum [Sorghum bicolor (L.) Moench] seed germination is sensitive to salinity, and seed priming is an effective method for alleviating the negative effects of salt stress on seed germination. However, few studies have compared the effects of different priming agents on sorghum germination under salt stress. In this study, we quantified the effects of priming with distilled water (HP), sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2), and polyethylene glycol (PEG) on sorghum seed germination under 150 mM NaCl stress. The germination potential, germination rate, germination index, vigor index, root length, shoot length, root fresh weight, shoot fresh weight, root dry weight, and shoot dry weight were significantly reduced by salt stress. Different priming treatments alleviated the germination inhibition caused by salt stress to varying degrees, and 50 mM CaCl2 was the most effective treatment. In addition, the mitigation effect of priming was stronger on root traits than on shoot traits. Mitigation efficacy was closely related to both the type of agent and the concentration of the solution. Principal component analysis showed that all concentrations of CaCl2 had higher scores and were clearly distinguished from other treatments based on their positive effects on all germination traits. The effects of the other agents varied with concentration. The priming treatments were divided into three categories based on their priming efficacy, and the 50, 100, and 150 mM CaCl2 treatments were placed in the first category. The 150 mM KCl, 10% PEG, HP, 150 mM NaCl, 30% PEG, and 50 mM KCl treatments were placed in the second category, and the 100 mM NaCl, 100 mM KCl, 20% PEG, and 50 mM NaCl treatments were least effective and were placed in the third category. Choosing appropriate priming agents and methods for future research and applications can ensure that crop seeds germinate healthily under saline conditions.


2018 ◽  
Vol 28 (3) ◽  
pp. 245-252 ◽  
Author(s):  
Maythem Al-Amery ◽  
Robert L. Geneve ◽  
Mauricio F. Sanches ◽  
Paul R. Armstrong ◽  
Elizabeth B. Maghirang ◽  
...  

AbstractRapid, non-destructive methods for measuring seed germination and vigour are valuable. Standard germination and seed vigour were determined using 81 soybean seed lots. From these data, seed lots were separated into high and low germinating seed lots as well as high, medium and low vigour seed lots. Near-infrared spectra (950–1650 nm) were collected for training and validation samples for each seed category and used to create partial least squares (PLS) prediction models. For both germination and vigour, qualitative models provided better discrimination of high and low performing seed lots compared with quantitative models. The qualitative germination prediction models correctly identified low and high germination seed lots with an accuracy between 85.7 and 89.7%. For seed vigour, qualitative predictions for the 3-category (low, medium and high vigour) models could not adequately separate high and medium vigour seeds. However, the 2-category (low, medium plus high vigour) prediction models could correctly identify low vigour seed lots between 80 and 100% and the medium plus high vigour seed lots between 96.3 and 96.6%. To our knowledge, the current study is the first to provide near-infrared spectroscopy (NIRS)-based predictive models using agronomically meaningful cut-offs for standard germination and vigour on a commercial scale using over 80 seed lots.


Weed Science ◽  
2021 ◽  
pp. 1-27
Author(s):  
Aseemjot Singh ◽  
Gulshan Mahajan ◽  
Bhagirath Singh Chauhan

Abstract Wild mustard (Sinapis arvensis L.) is a widespread weed of the southeastern cropping region of Australia. Seed germination ecology of S. arvensis populations selected from different climatic regions may differ due to adaptative traits. Experiments were conducted to evaluate the effects of temperature, light, radiant heat, soil moisture, salt concentration, and burial depth on seed germination and seedling emergence of two [Queensland (Qld) population: tropical region; and Victoria (Vic) population: temperate region] populations of S. arvensis. Both populations germinated over a wide range of day/night (12 h/12 h) temperatures (15/5 to 35/25 C), and had the highest germination at 30/20 C. Under complete darkness, the Qld population (61%) had higher germination than the Vic population (21%); however, under the light/dark regime, both populations had similar germination (78 to 86%). At 100 C pretreatment for 5 min, the Qld population (44%) had higher germination than the Vic population (13%). Germination of both populations was nil when given pretreatment at 150 and 200 C. The Vic population was found tolerant to high osmotic and salt stress compared with the Qld population. At an osmotic potential of −0.4 MPa, germination of Qld and Vic populations was reduced by 85% and 42%, respectively, compared with their respective control. At 40, 80, and 160 mM sodium chloride, germination of the Qld population was lower than the Vic population. Averaged over the populations, seedling emergence was highest (52%) from a burial depth of 1 cm and was nil from 8 cm depth. Differential germination behaviors of both populations to temperature, light, radiant heat, water stress, and salt stress suggests that populations of S. arvensis may have undergone differential adaptation. Knowledge gained from this study will assist in developing suitable control measures for this weed species to reduce the soil seedbank.


Sign in / Sign up

Export Citation Format

Share Document