scholarly journals Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

2017 ◽  
Vol 8 ◽  
Author(s):  
Kai Shu ◽  
Ying Qi ◽  
Feng Chen ◽  
Yongjie Meng ◽  
Xiaofeng Luo ◽  
...  
2020 ◽  
Author(s):  
Xiaoyue Yu ◽  
Wei Tang ◽  
Yongjie Yang ◽  
Jianping Zhang ◽  
Yongliang Lu

Abstract Background Herbicide resistant mutations are predicted to exhibit fitness cost under herbicide-free conditions. Asia minor bluegrass (Polypogon fugax) is a common weed species in the winter crops. Our previous study established a P. fugax accession (LR) resistant to acetyl-CoA carboxylase (ACCase) inhibiting herbicides. Besides, LR also exhibited fitness cost, like lower germination, relative to the sensitive plants (LS). But little is known about the gene expression profile of seed germination process in herbicide resistance P.fugax. Results The maximum germination (gMAX) of LS reached 94%, while that of LR was 52%. Exogenous gibberellin and abscisic acid synthesis inhibitor fluridone could break the dormancy of LR, increasing gMAX to 78% and 94%, respectively. A comparative transcriptome was conducted to analyze the genes expression profile of LS and LR at two germination time points. A total of 11,856 and 23,123 differentially expressed genes (DEGs) were identified in LS and LR at two time points. Most of DEGs were involved in lipid metabolism, carbohydrate metabolism, amino acid metabolism and secondary metabolites biosynthesis. Four genes related to GA biosynthesis and signal transduction showed higher expression in LS and five genes related to ABA biosynthesis and signal transduction showed higher expression in LR during germination. Twenty-four genes involved in glycolysis, TCA cycle, pentose phosphate pathway and fatty acid metabolism had higher expression levels in LS than LR during germination. Conclusions Our results indicated that GA biosynthesis and transduction, carbohydrate and fatty acid metabolism was more actively expressed in LS plants, resulting in stronger germination ability of LS relative to LR. The highly expressed genes in ABA biosynthesis and transduction contribute to maintain the seed dormancy of LR plants. This study provided new insight into transcriptional changes and interaction in seed germination process of P. fugax, and compared the differential expression profile between the herbicides resistant and sensitive plants during seed germination.


2015 ◽  
Vol 290 (6) ◽  
pp. 2147-2162 ◽  
Author(s):  
Guizhen Kan ◽  
Wei Zhang ◽  
Wenming Yang ◽  
Deyuan Ma ◽  
Dan Zhang ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2437
Author(s):  
Yiru Wang ◽  
Junli Zhang ◽  
Minghao Sun ◽  
Cheng He ◽  
Ke Yu ◽  
...  

Maize vivipary, precocious seed germination on the ear, affects yield and seed quality. The application of multi-omics approaches, such as transcriptomics or metabolomics, to classic vivipary mutants can potentially reveal the underlying mechanism. Seven maize vivipary mutants were selected for transcriptomic and metabolomic analyses. A suite of transporters and transcription factors were found to be upregulated in all mutants, indicating that their functions are required during seed germination. Moreover, vivipary mutants exhibited a uniform expression pattern of genes related to abscisic acid (ABA) biosynthesis, gibberellin (GA) biosynthesis, and ABA core signaling. NCED4 (Zm00001d007876), which is involved in ABA biosynthesis, was markedly downregulated and GA3ox (Zm00001d039634) was upregulated in all vivipary mutants, indicating antagonism between these two phytohormones. The ABA core signaling components (PYL-ABI1-SnRK2-ABI3) were affected in most of the mutants, but the expression of these genes was not significantly different between the vp8 mutant and wild-type seeds. Metabolomics analysis integrated with co-expression network analysis identified unique metabolites, their corresponding pathways, and the gene networks affected by each individual mutation. Collectively, our multi-omics analyses characterized the transcriptional and metabolic landscape during vivipary, providing a valuable resource for improving seed quality.


2011 ◽  
Vol 3 (3) ◽  
pp. 126-129 ◽  
Author(s):  
Zahra RASTEGAR ◽  
Mohammad SEDGHI ◽  
Saeid KHOMARI


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1473
Author(s):  
Zlatica Mamlic ◽  
Ivana Maksimovic ◽  
Petar Canak ◽  
Goran Mamlic ◽  
Vojin Djukic ◽  
...  

Soybean production in the system of organic agriculture is not very demanding, and this has been well documented both through experimental results and commercial production. However, one of the biggest problems in organic production is the lack of adequate pre-sowing treatments. Therefore, the aim of this study was to examine the effect of the electrostatic field. This is a physical treatment that was first used for seed treatment in the 18th century but has mostly been neglected since then. Seeds of five soybean genotypes with differently colored seed coats (yellow, green, dark green, brown, and black) were included in this study. The seeds were exposed to different values of direct current (DC) with the following voltages: 0 V (control), 3 V, 6 V, and 9 V, to which the seeds were exposed for 0 min (control), 1 min, and 3 min. After exposing the seeds to the electric field, the physiological properties of seeds and seedlings at the first stage of growth were evaluated. The results show that the effect of the electrostatic field on seed quality depends on the genotype, voltage, and exposure time. The application of DC can be a suitable method for improving seed germination and the initial growth of soybean seedlings. In addition, the results indicate that it is necessary to adjust the DC treatment (voltage and duration of exposure of seeds) to particular genotypes since inadequate treatments may reduce the quality of seeds.


2020 ◽  
pp. 1-9
Author(s):  
Nidia H. Montechiarini ◽  
Luciana Delgado ◽  
Eligio N. Morandi ◽  
Néstor J. Carrillo ◽  
Carlos O. Gosparini

Abstract During soybean seed germination, the expansive growth potential of the embryonic axes is driven by water uptake while cell wall loosening occurs in cells from the elongation zone (EZ). Expansins are regarded as primary promoters of cell wall remodelling in all plant expansion processes, with the expression profiles of the soybean expansins supporting their cell or tissue specificity. Therefore, we used embryonic axes isolated from whole seed and focused on the EZ to study seed germination. Using a suite of degenerate primers, we amplified an abundantly expressed expansin gene at the EZ during soybean embryonic axis germination, which was identified as EXP1 by in silico analyses. Expression studies showed that EXP1 was induced under germination conditions in distilled water and down-regulated by abscisic acid (ABA), which inhibits soybean germination by physiologically restraining expansion. Moreover, we also identified a time window of ABA responsiveness within the first 6 h of incubation in water, after which ABA lost control of both EXP1 expression and embryonic axis germination, thus confirming the early role of EXP1 in the EZ during this process. By contrast, EXP1 levels in the EZ increased even when germination was impaired by osmotically limiting the water availability required to develop the embryonic axes’ growth potential. We propose that these higher EXP1 levels are involved in the fast germination of soybean embryonic axes as soon as water availability is re-established. Taken together, our results show strong EXP1 expression in the EZ and postulate EXP1 as a target candidate for soybean seed germination control.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 903
Author(s):  
Wenrui Gao ◽  
Yan Liu ◽  
Juan Huang ◽  
Yaqiu Chen ◽  
Chen Chen ◽  
...  

Seed germination is an important phase transitional period of angiosperm plants during which seeds are highly sensitive to different environmental conditions. Although seed germination is under the regulation of salicylic acid (SA) and other hormones, the molecular mechanism underlying these regulations remains mysterious. In this study, we determined the expression of SA methyl esterase (MES) family genes during seed germination. We found that MES7 expression decreases significantly in imbibed seeds, and the dysfunction of MES7 decreases SA content. Furthermore, MES7 reduces and promotes seed germination under normal and salt stress conditions, respectively. The application of SA restores the seed germination deficiencies of mes7 mutants under different conditions. Taking together, our observations uncover a MeSA hydrolytic enzyme, MES7, regulates seed germination via altering SA titer under normal and abiotic stress conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245505
Author(s):  
Xiaofei Chen ◽  
Ruidong Zhang ◽  
Yifan Xing ◽  
Bing Jiang ◽  
Bang Li ◽  
...  

Sorghum [Sorghum bicolor (L.) Moench] seed germination is sensitive to salinity, and seed priming is an effective method for alleviating the negative effects of salt stress on seed germination. However, few studies have compared the effects of different priming agents on sorghum germination under salt stress. In this study, we quantified the effects of priming with distilled water (HP), sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2), and polyethylene glycol (PEG) on sorghum seed germination under 150 mM NaCl stress. The germination potential, germination rate, germination index, vigor index, root length, shoot length, root fresh weight, shoot fresh weight, root dry weight, and shoot dry weight were significantly reduced by salt stress. Different priming treatments alleviated the germination inhibition caused by salt stress to varying degrees, and 50 mM CaCl2 was the most effective treatment. In addition, the mitigation effect of priming was stronger on root traits than on shoot traits. Mitigation efficacy was closely related to both the type of agent and the concentration of the solution. Principal component analysis showed that all concentrations of CaCl2 had higher scores and were clearly distinguished from other treatments based on their positive effects on all germination traits. The effects of the other agents varied with concentration. The priming treatments were divided into three categories based on their priming efficacy, and the 50, 100, and 150 mM CaCl2 treatments were placed in the first category. The 150 mM KCl, 10% PEG, HP, 150 mM NaCl, 30% PEG, and 50 mM KCl treatments were placed in the second category, and the 100 mM NaCl, 100 mM KCl, 20% PEG, and 50 mM NaCl treatments were least effective and were placed in the third category. Choosing appropriate priming agents and methods for future research and applications can ensure that crop seeds germinate healthily under saline conditions.


Sign in / Sign up

Export Citation Format

Share Document