Significant downtrend of antimicrobial resistance rate and rare β-lactamase genes and plasmid replicons carriage in clinical Pseudomonas aeruginosa in Southern China

2021 ◽  
pp. 105124
Author(s):  
Zhenbo Xu ◽  
Xin Lin ◽  
Thanapop Soteyome ◽  
Yanrui Ye ◽  
Dingqiang Chen ◽  
...  
2020 ◽  
Vol 44 ◽  
pp. 1
Author(s):  
Kasim Allel ◽  
Patricia García ◽  
Jaime Labarca ◽  
José M. Munita ◽  
Magdalena Rendic ◽  
...  

Objective. To identify socioeconomic factors associated with antimicrobial resistance of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli in Chilean hospitals (2008–2017). Methods. We reviewed the scientific literature on socioeconomic factors associated with the emergence and dissemination of antimicrobial resistance. Using multivariate regression, we tested findings from the literature drawing from a longitudinal dataset on antimicrobial resistance from 41 major private and public hospitals and a nationally representative household survey in Chile (2008–2017). We estimated resistance rates for three priority antibiotic–bacterium pairs, as defined by the Organisation for Economic Co-operation and Development; i.e., imipenem and meropenem resistant P. aeruginosa, cloxacillin resistant S. aureus, and cefotaxime and ciprofloxacin resistant E. coli. Results. Evidence from the literature review suggests poverty and material deprivation are important risk factors for the emergence and transmission of antimicrobial resistance. Most studies found that worse socioeconomic indicators were associated with higher rates of antimicrobial resistance. Our analysis showed an overall antimicrobial resistance rate of 32.5%, with the highest rates for S. aureus (40.6%) and the lowest for E. coli (25.7%). We found a small but consistent negative association between socioeconomic factors (income, education, and occupation) and overall antimicrobial resistance in univariate (p < 0.01) and multivariate analyses (p < 0.01), driven by resistant P. aeruginosa and S. aureus. Conclusion. Socioeconomic factors beyond health care and hospital settings may affect the emergence and dissemination of antimicrobial resistance. Preventing and controlling antimicrobial resistance requires efforts above and beyond reducing antibiotic consumption.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Bai ◽  
Zhengquan Chen ◽  
Kaijian Luo ◽  
Fanliang Zeng ◽  
Xiaoyun Qu ◽  
...  

The purpose of this study was to investigate the prevalence, antimicrobial resistance, virulence genes, and genetic diversity of Campylobacter spp. along the yellow-feathered broiler slaughtering line in Southern China from December 2018 to June 2019. A total of 157 Campylobacter spp. isolates were identified from 1,102 samples (including 53.6% (75/140) of live chicken anal swab samples, 27.5% (44/160) of defeathering samples, 18.1% (29/160) of evisceration samples, 2.1% (3/140) of washing samples, 1.4% (2/140) of chilling samples, and 1.1% (4/362) of environmental samples). The prevalence of Campylobacter spp. was 14.2%, including 43.9% Campylobacter jejuni, 53.5% Campylobacter coli, and 2.5% other Campylobacter species. The highest antimicrobial resistance rate was found to be against sulfamethoxazole (138/157, 87.9%), and 90.4% (142/157) of the isolates were multidrug resistant (MDR). Examination of resistance-related genes revealed the double base mutated Thr-86-Ile, which informed ACA-TTA, with an Arg-79-Lys substitution in gyrA. Eleven virulence-associated genes (cadF, cdtA, cdtB, ciaB, flaA, imaA, dnaJ, plaA, virB11, racR, and cdtC) were also detected by a polymerase chain reaction (PCR) analysis, and cadF (81.5%) was the most prevalent. Based on an analysis of pulsed-field gel electrophoresis (PFGE) results, we found that Campylobacter spp. could be cross-contaminated throughout the entire slaughtering line. These results show that it is imperative to study the Campylobacter spp. from the yellow-feathered broiler along the slaughtering line in China to develop preventative and treatment measures for the poultry industry, as well as food safety and public health.


2019 ◽  
Vol 70 (5) ◽  
pp. 1778-1783
Author(s):  
Andreea-Loredana Golli ◽  
Floarea Mimi Nitu ◽  
Maria Balasoiu ◽  
Marina Alina Lungu ◽  
Cristiana Cerasella Dragomirescu ◽  
...  

To determine the resistance pattern of bacterial pathogens involved in infections of the patients aged between 18-64 years, admitted in a ICU from a 1518-bed university-affiliated hospital. A retrospective study of bacterial pathogens was carried out on 351 patients aged between 18-64 years admitted to the ICU, from January to December 2017. In this study there were analysed 469 samples from 351 patients (18-64 years). A total of 566 bacterial isolates were obtained, of which 120 strains of Klebsiella spp. (35.39%%), followed by Nonfermenting Gram negative bacilli, other than Pseudomonas and Acinetobacter (NFB) (75- 22.12%), Acinetobacter spp. (53 - 15.63%), Pseudomonas aeruginosa and Proteus (51 - 15.04%), and Escherichia coli (49 - 14.45%). The most common isolates were from respiratory tract (394 isolates � 69.61%). High rates of MDR were found for Pseudomonas aeruginosa (64.70%), MRSA (62.65%) and Klebsiella spp. (53.33%), while almost all of the isolated NFB strains were MDR (97.33%). There was statistic difference between the drug resistance rate of Klebsiella and E. coli strains to ceftazidime and ceftriaxone (p[0.001), cefuroxime (p[0.01) and to cefepime (p[0.01). The study revealed an alarming pattern of antibiotic resistance in the majority of ICU isolates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mojisola C. Hosu ◽  
Sandeep D. Vasaikar ◽  
Grace E. Okuthe ◽  
Teke Apalata

AbstractThe proliferation of extended spectrum beta-lactamase (ESBL) producing Pseudomonas aeruginosa represent a major public health threat. In this study, we evaluated the antimicrobial resistance patterns of P. aeruginosa strains and characterized the ESBLs and Metallo- β-lactamases (MBL) produced. Strains of P. aeruginosa cultured from patients who attended Nelson Mandela Academic Hospital and other clinics in the four district municipalities of the Eastern Cape between August 2017 and May 2019 were identified; antimicrobial susceptibility testing was carried out against thirteen clinically relevant antibiotics using the BioMérieux VITEK 2 and confirmed by Beckman autoSCAN-4 System. Real-time PCR was done using Roche Light Cycler 2.0 to detect the presence of ESBLs; blaSHV, blaTEM and blaCTX-M genes; and MBLs; blaIMP, blaVIM. Strains of P. aeruginosa demonstrated resistance to wide-ranging clinically relevant antibiotics including piperacillin (64.2%), followed by aztreonam (57.8%), cefepime (51.5%), ceftazidime (51.0%), piperacillin/tazobactam (50.5%), and imipenem (46.6%). A total of 75 (36.8%) multidrug-resistant (MDR) strains were observed of the total pool of isolates. The blaTEM, blaSHV and blaCTX-M was detected in 79.3%, 69.5% and 31.7% isolates (n = 82), respectively. The blaIMP was detected in 1.25% while no blaVIM was detected in any of the strains tested. The study showed a high rate of MDR P. aeruginosa in our setting. The vast majority of these resistant strains carried blaTEM and blaSHV genes. Continuous monitoring of antimicrobial resistance and strict compliance towards infection prevention and control practices are the best defence against spread of MDR P. aeruginosa.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haiyan Xu ◽  
Weibing Zhang ◽  
Kai Zhang ◽  
Yue Zhang ◽  
Zhenyu Wang ◽  
...  

Abstract Background Infection with Salmonella enterica usually results in diarrhea, fever, and abdominal cramps, but some people become asymptomatic or chronic carrier as a source of infection for others. This study aimed to analyze the difference in serotype, antimicrobial resistance, and genetic profiles between Salmonella strains isolated from patients and those from asymptomatic people in Nantong city, China. Methods A total of 88 Salmonella strains were collected from patients and asymptomatic people from 2017 to 2018. Serotyping, antimicrobial susceptibility testing, and PFGE analysis were performed to analyze the characteristics of these strains. Results Twenty serotypes belonging to 8 serogroups were identified in the 88 Salmonella strains. S. Typhimurium remained to be the predominant serotype in strains from both patients and asymptomatic people. Among the 27 strains from patients, S. Enteritidis and S. Rissen were shown as the other two major serotypes, while S. London, S. Derby, and S. Meleagridis were demonstrated as the other significant serotypes among the 61 strains from asymptomatic people. Antimicrobial resistance testing revealed that 84.1% of strains from both resources were multi-drug resistant. PFGE displayed a highly discriminative ability to differentiate strains belonging to S. Derby, S. Typhimurium, etc., but could not efficiently differentiate serotypes like S. Enteritidis. Conclusions This study’s results demonstrated that S. Typhimurium could cause human infection in both symptomatic and asymptomatic state; S. London, S. Derby, and S. Meleagridis usually cause asymptomatic infection, while S. Enteritidis infection mainly results in human diseases. The high multi-drug resistance rate detected in the antimicrobial resistance and diverse PFGE profiles of these strains implied that the strains were isolated from different sources, and the increased surveillance of Salmonella from both patients and asymptomatic people should be taken to control the disease.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Quan Li ◽  
Jian Yin ◽  
Zheng Li ◽  
Zewei Li ◽  
Yuanzhao Du ◽  
...  

AbstractSalmonella is an important food-borne pathogen associated with public health and high economic losses. To investigate the prevalence and the characteristics of Salmonella in a pig slaughterhouse in Yangzhou, a total of 80 Salmonella isolates were isolated from 459 (17.43%) samples in 2016–2017. S. Derby (35/80, 43.75%) was the most prevalent, followed by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 13.75%). The highest rates of susceptibility were observed to cefoxitin (80/80, 100.0%) and amikacin (80/80, 100.0%), followed by aztreonam (79/80, 98.75%) and nitrofurantoin (79/80, 98.75%). The highest resistance rate was detected for tetracycline (65/80, 81.25%), followed by ampicillin (60/80, 75.00%), bactrim (55/80, 68.75%), and sulfisoxazole (54/80, 67.50%). Overall, 91.25% (73/80) of the isolates were resistant to at least one antibiotic, while 71.25% (57/80) of the isolate strains were multidrug resistant in the antimicrobial susceptibility tested. In addition, 86.36% (19/22) of the 22 antimicrobial resistance genes in the isolates were identified. Our data indicated that the resistance to certain antimicrobials was significantly associated, in part, with antimicrobial resistance genes. Furthermore, 81.25% (65/80) isolates harbored the virulence gene of mogA, of which 2 Salmonella Typhimurium isolates carried the mogA, spvB and spvC virulence genes at the same time. The results showed that swine products in the slaughterhouse were contaminated with multidrug resistant Salmonella commonly, especially some isolates carry the spv virulence genes. The virulence genes might facilitate the dissemination of the resistance genes to consumers along the production chain, suggesting the importance of controlling Salmonella during slaughter for public health.


Sign in / Sign up

Export Citation Format

Share Document