scholarly journals New Developments in DD4hep

2019 ◽  
Vol 214 ◽  
pp. 02037
Author(s):  
Marko Petricˇ ◽  
Markus Frank ◽  
Frank Gaede ◽  
André Sailer

For a successful experiment, it is of utmost importance to provide a consistent detector description. This is also the main motivation behind DD4hep, which addresses detector description in a broad sense including the geometry and the materials used in the device, and additional parameters describing, e.g., the detection techniques, constants required for alignment and calibration, description of the readout structures and conditions data. An integral part of DD4hep is DDG4 which is a powerful tool that converts arbitrary DD4hep detector geometries to Geant4 and provides access to all Geant4 action stages. It is equipped with a comprehensive plugins suite that includes handling of different IO formats; Monte Carlo truth linking and a large set of segmentation and sensitive detector classes, allowing the simulation of a wide variety of detector technologies. In the following, recent developments in DD4hep/DDG4 like the addition of a ROOT based persistency mechanism for the detector description and the development of framework support for DDG4 are highlighted. Through this mechanism an experiment’s data processing framework can interface its essential tools to all DDG4 actions. This allows for simple integration of DD4hep into existing experiment frameworks.

2021 ◽  
Vol 251 ◽  
pp. 03015
Author(s):  
Markus Frank ◽  
Frank Gaede ◽  
Marko Petrič ◽  
André Sailer

Consistent detector description is an integral part of all modern experiments and also the main motivation behind the creation of DD4hep, which tries to address detector description in a broad sense including for, example, geometry and the materials used in the device, additional parameters describing e.g. the detection techniques, constants required for alignment and calibration, description of the readout structures and conditions data. A central component of DD4hep is DDG4 which is a mechanism that converts arbitrary DD4hep detector geometries to Geant4 and provides access to all Geant4 action stages. In addition to that DDG4 also offers a comprehensive plugins suite that includes handling of different IO formats, Monte Carlo truth linking and a large set of segmentation and sensitive detector classes, allowing the simulation of a wide variety of detector technologies. One of the last remaining open issues of detector description was support for drawings from civil engineers for passive detector components. In this proceedings we highlight recent developments in DD4hep/DDG4 that enable support for CAD drawings and generic tessellated shapes and through the help of the library assimp enable the import of a wide variety of CAD formats, thus eliminating the need for writing complex re-implementations of CAD drawings in source code. In addition, we present other developments such as support for a new output format called EDM4hep and developments for a more unified and easier handling of units.


2020 ◽  
Vol 245 ◽  
pp. 02004
Author(s):  
Frank Gaede ◽  
Markus Frank ◽  
Marko Petric ◽  
Andre Sailer

Detector description is an essential component in simulation, reconstruction and analysis of data resulting from particle collisions in high energy physics experiments and for the detector development studies for future experiments. Current detector description implementations of running experiments are mostly specific implementations. DD4hep [1] is an open source toolkit created in 2012 to serve as a generic detector description solution. The main motivation behind DD4hep is to provide the community with an integrated solution for all these stages and address detector description in a broad sense, including the geometry and the materials used in the device, and additional parameters describing e.g. the detection techniques, constants required for alignment and calibration, description of the readout structures and conditions data. In these proceedings, we will give an overview of the project and discuss recent developments in DD4hep as well as showcase adaptions of the framework by LHC and upcoming accelerator projects together with the road map of future developments.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 508
Author(s):  
José Luis Ruvalcaba-Sil ◽  
Luis Barba ◽  
Edgar Casanova-González ◽  
Alejandro Mitrani ◽  
Margarita Muñoz ◽  
...  

Techinantitla building complex, in the Amanalco neighborhood of the ancient city of Teotihuacan, is famous for the iconography and quality of the mural paintings found in this site. A significant part of this heritage has been lost due to looting. In recent years, an interdisciplinary research project was developed to study the limited patrimony that was left. As part of this study, we first employed geophysical techniques to reconstruct the architectural pattern of the compound’s remaining walls, where other paintings may still be found. Then, we applied a non-invasive methodology to characterize a large set of fragments recovered in the 1980s and to gain information on their pigments and manufacturing techniques. This methodology included False Color Infrared Imaging, X-ray Fluorescence and Fiber-Optics Reflectance Spectroscopy, and led to the identification of hematite, calcite, malachite, azurite and an unidentified blue pigment. The results were compared with a previous study performed on a set of Techinantitla mural paintings looted in the 1960s. A broader comparison with contemporary mural paintings from other Teotihuacan complexes shows good agreement in the materials used. These results may suggest a standardization in the making of Teotihuacan mural painting during the Xolapan period (350 to 550 AD).


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2400
Author(s):  
Leandra P. Santos ◽  
Douglas S. da Silva ◽  
Thais H. Morari ◽  
Fernando Galembeck

Many materials and additives perform well as fire retardants and suppressants, but there is an ever-growing list of unfulfilled demands requiring new developments. This work explores the outstanding dispersant and adhesive performances of cellulose to create a new effective fire-retardant: exfoliated and reassembled graphite (ERG). This is a new 2D polyfunctional material formed by drying aqueous dispersions of graphite and cellulose on wood, canvas, and other lignocellulosic materials, thus producing adherent layers that reduce the damage caused by a flame to the substrates. Visual observation, thermal images and surface temperature measurements reveal fast heat transfer away from the flamed spots, suppressing flare formation. Pinewood coated with ERG underwent standard flame resistance tests in an accredited laboratory, reaching the highest possible class for combustible substrates. The fire-retardant performance of ERG derives from its thermal stability in air and from its ability to transfer heat to the environment, by conduction and radiation. This new material may thus lead a new class of flame-retardant coatings based on a hitherto unexplored mechanism for fire retardation and showing several technical advantages: the precursor dispersions are water-based, the raw materials used are commodities, and the production process can be performed on commonly used equipment with minimal waste.


Author(s):  
Anne M. Pesenacker ◽  
Lucy R. Wedderburn

In recent years, there have been many new developments in the field of regulatory T cells (Treg), challenging the consensus on their behaviour, classification and role(s) in disease. The role Treg might play in autoimmune disease appears to be more complex than previously thought. Here, we discuss the current knowledge of regulatory T cells through animal and human research and illustrate the recent developments in childhood autoimmune arthritis (juvenile idiopathic arthritis (JIA)). Furthermore, this review summarises our understanding of the fields and assesses current and future implications for Treg in the treatment of JIA.


2020 ◽  
Author(s):  
Grigory Sharov ◽  
Dustin R. Morado ◽  
Marta Carroni ◽  
José Miguel de la Rosa-Trevín

Scipion is a modular image processing framework integrating several software packages under a unified interface while taking care of file formats and conversions. Here new developments and capabilities of the Scipion plugin for the Relion software are presented and illustrated with the image processing pipeline of published data. The user interfaces of Scipion and Relion are compared and the key differences highlighted, allowing this manuscript to be used as a guide for both new and experienced users of these software. Different streaming image processing options are also discussed demonstrating the flexibility of the Scipion framework.SynopsisAn overview of the Scipion plugin for the Relion software is presented and various capabilities of image processing within Scipion framework are discussed.


1986 ◽  
Vol 7 (9) ◽  
pp. 276-286
Author(s):  
Robert C. Stern

Advances in diagnosis and treatment of cystic fibrosis have greatly extended life expectancy and have decreased morbidity. However, further progress requires knowledge of the fundamental genetic defect and how it is related to the pulmonary pathophysiology. Major new developments in both these areas are likely within the next 5 to 10 years.


Author(s):  
Jeanny B. Aragon-Ching ◽  
Lance C. Pagliaro

The diagnosis and treatment of rare genitourinary tumors is inherently challenging. The Rare Diseases Act of 2002 initially defined a rare disorder as one that affects fewer than 200,000 Americans. The lack of widely available clinical guidelines, limited research funding, and inaccessible clinical trials often lead to difficulty with treatment decisions to guide practitioners in rendering effective care for patients with rare genitourinary cancers. This article will discuss basic tenets of diagnosis and treatment as well as recent developments and clinical trials in rare non-urothelial bladder cancers and penile squamous cell cancers.


2019 ◽  
Vol 57 (1) ◽  
pp. 79-112 ◽  
Author(s):  
Susanna L. Widicus Weaver

The recent advancements in far-infrared (far-IR) astronomy brought about by the Herschel, SOFIA, and ALMA observatories have led to technological advancements in millimeterwave and submillimeterwave laboratory spectroscopy that is used to support molecular observations. This review gives an overview of rotational spectroscopy and its relationship with observational astronomy, as well as an overview of laboratory spectroscopic techniques focusing on both historical approaches and new advancements. Additional topics discussed include production and detection techniques for unstable molecular species of astrochemical interest, data analysis approaches that address spectral complexity and line confusion, and the current state of and limitations to spectral line databases. Potential areas for new developments in this field are also reviewed. To advance the field, the following challenges must be addressed: ▪ Data acquisition speed, spectral sensitivity, and analysis approaches for complex mixtures and broadband spectra are the greatest limitations—and hold the greatest promise for advancement—in this field of research. ▪ Full science return from far-IR observatories cannot be realized until laboratory spectroscopy catches up with the data rate for observations. ▪ New techniques building on those used in the microwave and IR regimes are required to fill the terahertz gap.


Sign in / Sign up

Export Citation Format

Share Document