scholarly journals Identification of chondroitin polymerizing factor (CHPF) as tumor promotor in cholangiocarcinoma through regulating cell proliferation, cell apoptosis and cell migration

Cell Cycle ◽  
2021 ◽  
Vol 20 (5-6) ◽  
pp. 591-602
Author(s):  
Xiaohui Duan ◽  
Jianhui Yang ◽  
Bo Jiang ◽  
Wenbin Duan ◽  
Rongguang Wei ◽  
...  
2020 ◽  
Author(s):  
Xiaohui Duan ◽  
Jianhui Yang ◽  
Bo Jiang ◽  
Wenbin Duan ◽  
Rongguang Wei ◽  
...  

Abstract Background: Cholangiocarcinoma (CCA) is a variety of biliary epithelial tumors involving intrahepatic, perihilar and distal bile duct. It is the most common malignant bile duct tumor in the liver and the second most common primary liver cancer, whose molecular mechanism not fully understood. Specifically, the relationship between CCA and chondroitin polymerizing factor (CHPF) is still not clear.Methods: In this study, detection of clinical specimens was performed to preliminarily study the role of CHPF in cholangiocarcinoma. Cholangiocarcinoma cells with CHPF knockdown were constructed for in vitro study, which was also used in the construction of mice xenograft model for investigating the role of CHPF in the development of cholangiocarcinoma.Results: The results demonstrated that CHPF was significantly upregulated in cholangiocarcinoma tissues compared with normal tissues. High expression of CHPF was correlated with more advanced tumor grade. Moreover, knockdown of CHPF significantly inhibited cell proliferation, cell migration, promoted cell apoptosis and arrest cell cycle in G2 phase in vitro, as well as suppressed tumor growth in vivo.Conclusions: In conclusion, CHPF was identified as a tumor promotor in the development and metastasis of cholangiocarcinoma, which may provide a novel therapeutic target for the targeted therapy against cholangiocarcinoma.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yixin Tong ◽  
Yuan Huang ◽  
Yuchao Zhang ◽  
Xiangtai Zeng ◽  
Mei Yan ◽  
...  

AbstractAt present, colorectal cancer (CRC) has become a serious threat to human health in the world. Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that may be involved in several physiological processes. However, whether DPP3 affects the development and progression of CRC remains a mystery. This study is the first to demonstrate the role of DPP3 in CRC. Firstly, the results of immunohistochemistry analysis showed the upregulation of DPP3 in CRC tissues compared with normal tissues, which is statistically analyzed to be positively correlated with lymphatic metastasis, pathological stage, positive number of lymph nodes. Moreover, the high expression of DPP3 predicts poor prognosis in CRC patients. In addition, the results of cell dysfunction experiments clarified that the downregulation of DPP3 significantly inhibited cell proliferation, colony formation, cell migration, and promoted apoptosis in vitro. DPP3 depletion could induce cell apoptosis by upregulating the expression of BID, BIM, Caspase3, Caspase8, HSP60, p21, p27, p53, and SMAC. In addition, downregulation of DPP3 can reduce tumorigenicity of CRC cells in vivo. Furthermore, CDK1 is determined to be a downstream target of DPP3-mediated regulation of CRC by RNA-seq, qPCR, and WB. The interaction between DPP3 and CDK1 shows mutual regulation. Specifically, downregulation of DPP3 can accentuate the effects of CDK1 knockdown on the function of CRC cells. Overexpression of CDK1 alleviates the inhibitory effects of DPP3 knockdown in CRC cells. In summary, DPP3 has oncogene-like functions in the development and progression of CRC by targeting CDK1, which may be an effective molecular target for the prognosis and treatment of CRC.


Dose-Response ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 155932581985098 ◽  
Author(s):  
Hongwen Cao ◽  
Yigeng Feng ◽  
Lei Chen ◽  
Chao Yu

Lobaplatin is a diastereometric mixture of platinum (II) complexes, which contain a 1,2-bis (aminomethyl) cyclobutane stable ligand and lactic acid. Previous studies have showed that lobaplatin plays inhibiting roles in various types of tumors. However, the role of lobaplatin in prostate cancer remains unknown. Cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cell proliferation was detected by cell colony formation assay. Cell migration and invasion were determined by transwell migration and invasion assay. Cell apoptosis was detected by flow cytometry. The messenger RNA and protein expression levels were detected by quantitative real-time polymerase chain reaction and Western blot. Lobaplatin treatment inhibits cell viability, cell proliferation, cell migration, and invasion, while promotes cell apoptosis of prostate cancer cell lines DU145 and PC3. Meanwhile, lobaplatin treatment regulates apoptosis by downregulation of BCL2 expression and upregulation of BAX expression levels. Our study suggests lobaplatin inhibits prostate cancer proliferation and migration through regulation of BCL2 and BAX expression.


2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Run-Tian Liu ◽  
Jing-Lin Cao ◽  
Chang-Qing Yan ◽  
Yang Wang ◽  
Cong-Jing An ◽  
...  

The present study explored the effect of long non-coding RNA-human ovarian cancer-specific transcript 2 (LncRNA-HOST2) on cell proliferation, migration, invasion and apoptosis of human hepatocellular carcinoma (HCC) cell line SMMC-7721. HCC tissues and adjacent normal tissues from 162 HCC patients were collected. The HCC cell lines were assigned into the control group (regular culture), negative control (NC) group (transfected with siRNA) and experimental group (transfected with Lnc-HOST2 siRNA). Quantitative real-time PCR (qRT-PCR) was used to detect the expression of LncRNA-HOST2. Cell proliferation was detected by CCK-8 and colony-forming assays, cell apoptosis by flow cytometry and cell migration by Scratch test. Transwell assay was used to evaluate cell migration and invasion abilities. LncRNA-HOST2 expression in the HCC tissues increased 2–10 times than that in the adjacent normal tissues. Compared with the HL-7702 cell line, LncRNA-HOST2 expression in HepG2, SMMC-7721 and Huh7 cell lines was all up-regulated, but the SMMC-7721 cell had the highest Lnc-HOST2 expression. The LncRNA-HOST2 expression in the experimental group was down-regulated as compared with the control and NC groups. In comparison with the control and NC groups, cloned cells reduced, cell apoptosis increased, clone-forming ability weakened and inhibitory rate of colony formation increased in the experimental group. The cells migrating and penetrating into the transwell chamber were fewer in the experimental group than those in the control and NC groups. The experimental group exhibited slow wound healing and decreased cell migration area after 48 h. These findings indicate that LncRNA-HOST2 can promote cell proliferation, migration and invasion and inhibit cell apoptosis in human HCC cell line SMMC-7721.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Shihua Ding ◽  
Shaohui Tang ◽  
Min Wang ◽  
Donghai Wu ◽  
Haijian Guo

Background and Aims. Acyl-CoA synthetase 5 (ACS5) has been reported to be associated with the development of various cancers, but the role of it in colorectal cancer (CRC) is not well understood. The present study aimed to explore the potential role of ACS5 in the development and progression of CRC. Methods. ACS5 expression in CRC tissues and CRC cell lines was examined, and its clinical significance was analyzed. The role of ACS5 in cell proliferation, apoptosis, and invasion was examined in vitro. Results. We found that ACS5 expression was upregulated in CRC cells and CRC tissues and that high ACS5 expression was more frequent in CRC patients with excess muscular layer and with poor tumor differentiation. Furthermore, knockdown of ACS5 in HT29 and SW480 cells significantly dampened cell proliferation, induced cell apoptosis, and reduced cell migration and invasion. In contrast, the ectopic overexpression of ACS5 in LOVO and SW620 cells remarkably promoted cell proliferation, inhibited cell apoptosis, and enhanced cell migration and invasion. Enhanced cell growth and invasion ability mediated by the gain of ACS5 expression were associated with downregulation of caspase-3 and E-cadherin and upregulation of survivin and CD44. Conclusions. Our data demonstrate that ACS5 can promote the growth and invasion of CRC cells and provide a potential target for CRC gene therapy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5129-5129
Author(s):  
Vijaya Pooja Vaikari ◽  
Jiawen Yang ◽  
Mojtaba Akhtari ◽  
Houda Alachkar

Abstract Background: Acute Myeloid Leukemia (AML) is a hematological malignancy with a 5-yr survival rate of 27%. This indicates an urgent need to identify better therapies. We previously analyzed various gene expression data sets of normal hematopoietic vs AML cells and reported that CD99 is upregulated in AML. CD99 loss of function by siRNA or monoclonal antibody decreased proliferation and migration of AML cells (Vaikari et al, ASH abstract, 2016). Recently, we have also shown that AML blasts transduced with CD99 overexpressing lentivirus exhibit a significant increase in cell proliferation (Vaikari et al, ASH abstract, 2017). Here we further expand our preclinical investigation to study the functional role of CD99 in AML. Methods: We performed lenti-viral transduction to overexpress CD99 (CD99 OE) or empty vector (EV) in THP-1, U937, and MOLM-13 AML cell lines. Proliferation assay was performed by seeding 1X105 cells/mL and measuring cell proliferation using trypan blue at 72 hours. Aggregation assay was performed by seeding 1X105CD99 OE (or EV) cells in a 6 well plate and images for cell aggregation were taken 6 hours later. For the differentiation and apoptosis assays, CD99 OE (or EV) (5X105 cells/mL) were starved overnight. Flow cytometry analyses for CD11b and Annexin-V PI were performed 24 hours later. To determine the effect of CD99 overexpression on cell migration, THP-1, U937, and MOLM-13 (1X105 cells) CD99 OE or EV cells were seeded in a transwell chamber for 4 hours and migration towards SDF-1a was analyzed. For the THP-1 and MOLM-13 murine model, 2.5 X106 cells overexpressing CD99 or EV (n=3 for each) were engrafted into NOD-scid /Il2rg-/- (NSG) mice. Bone marrow (BM) and peripheral blood (PB) were collected to determine engraftment by hCD45 staining through flow cytometry. Results: Transducing cells with CD99 resulted in increased cell proliferation as compared with their respective controls in THP-1 (CD99 OE vs EV: 1.78 fold, p<0.0001), U937 (CD99 OE vs EV: 1.56 fold, p<0.0001), and in MOLM-13 cells (CD99 OE vs EV: 1.87 fold, p<0.0001). THP-1, MOLM-13 and U937 cells stably overexpressing CD99 displayed higher cell aggregation capacity compared to EV cells. Cells stably overexpressing CD99 showed an increase in CD11b expression in THP-1 (CD99 OE vs EV: 2.055-fold, p=0.0027), U937 (CD99 OE vs EV: 1.56-fold, p=0.01), and MOLM-13 cells (CD99 OE vs EV: 1.89- fold, p<0.0001). Cell aggregation was also accompanied by an increase in cell apoptosis of CD99 OE cells in THP-1(CD99 OE vs EV: 3.48-fold, p=0.001), U937 (CD99 OE vs EV: 3.68-fold, p=0.11), and MOLM-13 cells (CD99 OE vs EV: 6.56-fold, p=0.0001). Additionally, CD99 overexpression decreased cell migration compared with EV cells in THP-1(CD99 OE vs EV: 67% decrease, p<0.0001), U937 (CD99 OE vs EV: 75% decrease, p<0.0001), and MOLM-13 cells (CD99 OE vs EV: 73% decrease, p=0.0003). Based on these results, we hypothesize that homotypic interaction of CD99 could play a role in its signaling process in AML. In both the THP-1 and MOLM-13 murine model, mice engrafted with CD99 OE cells had smaller spleens compared with EV mice. In the THP-1 murine model, CD99 OE mice had significantly less engraftment compared with the EV mice in the BM (6.69 vs 14 %, p=0.047), and PB (3.61 vs 91.67%, p<0.0001). Similarly, in the MOLM-13 murine model, hCD45 flow analysis revealed that CD99 OE mice have significantly less engraftment compared with the EV mice in the BM (39.83 vs 71.43%, p=0.0022), and PB (19.43 vs 67.13 %, p=0.018). Conclusion: In summary, our results suggests that even though CD99 enhances AML cell proliferation, it also enhances homotypic cell interaction and cell aggregation, which results in increased cell apoptosis as well as a decrease in cell migration and possibly responsible for the decrease leukemia engraftment. Further investigations are ongoing to determine the effect of homotypic interaction of CD99 in AML. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Hao Zhang ◽  
Qiongqiong Zhou

Abstract Background: As the most common primary bone tumor in adolescents and children, osteosarcoma commonly occurs with high mortality rate and metastasis. Emerging evidence has illustrated that circular RNAs (circRNAs) are important regulatory RNAs that are involved in multiple biological activities of carcinomas. Circ-FOXM1 (hsa_circ_0025033) is a recently found circRNA and promotes the cellular activities of several cancers. However, the function and molecular mechanism of circ-FOXM1 in osteosarcoma have not been interrogated yet. Methods: The qRT-PCR was utilized to test the expression of circ-FOXM1 in osteosarcoma cell lines. Loss-of-function assays including CCK-8, EdU, TUNEL, transwell and western blot assays were conducted to measure cell proliferation, cell migration, EMT process and cell apoptosis. Luciferase reporter assay and RIP assay were utilized to detect the interaction of circ-FOXM1 and RNAs. Results:We discovered the high expression of circ-FOXM1 in osteosarcoma cells. Besides, it was indicated that circ-FOXM1 knockdown inhibited cell proliferation, cell migration and EMT process, as well as induced cell apoptosis of osteosarcoma cells. Furthermore, circ-FOXM1 was discovered to upregulate the expression level of forkhead box M1 (FOXM1) at post-transcriptional level. Moreover, it was proved that circ-FOXM1 sponged miR-320a and miR-320b so as to increase FOXM1 expression. Additionally, circ-FOXM1 could activate Wnt signaling pathway through upregulating FOXM1. In the end, rescue assays certified that FOXM1 overexpression could totally rescue the circ-FOXM1 silence-repressed cellular activities of osteosarcoma cells.Conclusion: Circ-FOXM1 facilitated the progression of osteosarcoma cells via relieving FOXM1 from the inhibition by miR-320a and miR-320b.


2022 ◽  
Vol 12 (3) ◽  
pp. 461-470
Author(s):  
Gang Quan ◽  
Bo Ren ◽  
Jian Xu ◽  
Jie Zhou ◽  
Guo Wu ◽  
...  

<sec> <title>Objective:</title> This study was designed to probe the influence and mechanism of lncRNA HOTAIR on migration, apoptosis and proliferation of hepatocellular carcinoma (HCC) cells. </sec> <sec> <title>Methods:</title> We evaluated LncRNA HOTAIR expression in HCC tissues and adjacent tissues, and serum of HCC patients and healthy controls. Later, we knocked down lncRNA HOTAIR, and utilized CCK-8 to determine Hep3B cell proliferation, flow cytometry for prospecting Hep3B cell apoptosis, and cell scratch assay for observing Hep3B cell migration.We anticipated the direct target of lncRNA HOTAIR, and adopted luciferase reporter assay to verify. Moreover, we inhibitedmiR-126-5p expression, and rescue experiment for evaluating the influence of si-HOTAIR+miR-126-5p inhibitors on Hep3B cell migration, apoptosis as well as proliferation. </sec> <sec> <title>Results:</title> Our results showed that lncRNA HOTAIR expression in tumor tissues and serum was significantly increased. Moreover, lncRNA HOTAIR inhibition significantly decreased the Hep3B cell proliferation rate, elevated Hep3B cell apoptosis rate, and inhibited Hep3B cell migration. Luciferase reporter assay suggested that miR-126-5p was the direct target of lncRNA HOTAIR. Furthermore, co-transfection of si-HOTAIR+miR-126-5p inhibitor could diminishthe effects of HOTAIR silencing on apoptosis, proliferation and migration. </sec> <sec> <title>Conclusion:</title> Silencing of lncRNA-HOTAIR can inhibit the HCC cell migration and proliferation, and increase the apoptosis by up-regulating miR-126-5p expression. </sec>


2020 ◽  
Vol 20 (16) ◽  
pp. 1933-1942
Author(s):  
Wencheng Dai ◽  
Xiaoxia Jin ◽  
Bin Jiang ◽  
Weixian Chen ◽  
Zhenhua Ji ◽  
...  

Background and Purpose: O-GlcNAcylation is a significant protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc) for intracellular signaling. Elevated O-GlcNAcylation contributes to cell proliferation, cell migration, cell apoptosis and signal transduction in various cancers. However, the expression level and functional role of O-GlcNAcylation in Hypopharyngeal Squamous Cell Carcinoma (HSCC) is not clearly elucidated. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a master transcriptional factor that has been found to be aberrantly activated in HSCC. Here, we provide a molecular rationale between O-GlcNAcylation and Nrf2 in HSCC patients. Methods:: The protein levels of O-GlcNAcylation and Nrf2 in HSCC tissues were detected by immunohistochemistry technique and western blot analysis. Then, O‐GlcNAcylation knockdown HSCC cells were applied in this study. Cell proliferation was detected by CCK8, colony-forming analysis, and cell cycle assays. Cell migration and invasion ability was evaluated by transwell assays. Cell apoptosis was measured by TUNEL analysis. Results: O-GlcNAcylation was obviously up-regulated in HSCC tissues, which correlated with tumor size and lymph node metastasis. In addition, the protein level of Nrf2 was found to positively correlate with the expression of O‐GlcNAcylation both in vivo and in vitro. Knockdown of O-GlcNAcylation significantly inhibited HSCC cell growth, suppressed cell migration, and promoted cell apoptosis, whereas overexpression of Nrf2 reversed these phenotypes. Mechanismly, the upregulation of O-GlcNAcylation promoted the phosphorylation of Akt, leading to the stabilization of Nrf2; this could be attenuated by inhibition of the PI3K/Akt signaling pathway. Conclusion: Here, we provide a molecular association between O-GlcNAcylation and Nrf2 in HSCC patients, thus providing valuable therapeutic targets for the disease.


Sign in / Sign up

Export Citation Format

Share Document