Nitrogen deficiency maintains the yield and improves the antioxidant activity of Coreopsis tinctoria Nutt

Author(s):  
Zhiyuan Li ◽  
Hong Jiang ◽  
Yanan Qin ◽  
Huizhuan Yan ◽  
Xiumei Jiang ◽  
...  

Abstract Nitrogen (N) deficiency levels were investigated for their potential to maintain the yield and improve antioxidant activity of Coreopsis tinctoria. Inflorescences and leaves at 0, 10, 20, 30, 40 and 50 d after flowering were frozen at −80 °C and plant growth, antioxidant activity, bioactive substance, enzyme activity and gene expression were evaluated. N deficiency maintained the total number of flowers, promoted phenol and flavonoid accumulation and enhanced antioxidant activity. Moreover, N deficiency stimulated activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H) and 4-coumarate: coenzyme A ligase (4CL) and induced CtPAL, CtC4H and Ct4CL gene expression. The data also suggest that N deficiency-induced phenolic and flavonoid accumulation occurs due to the activation of biosynthetic pathways in C. tinctoria. We characterize the unique features of C. tinctoria under N deficiency conditions and provide valuable information for the cultivation of high-N use efficiency varieties with low input and high output.

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 767
Author(s):  
Longtao Tan ◽  
Gang Gao ◽  
Chunming Yu ◽  
Aiguo Zhu ◽  
Ping Chen ◽  
...  

Nitrogen-use efficiency (NUE) has significant impacts on plant growth and development. NUE in plants differs substantially in physiological resilience to nitrogen stress; however, the molecular mechanisms underlying enhanced resilience of high-NUE plants to nitrogen deficiency remains unclear. We compared transcriptome-wide gene expression between high-NUE and low-NUE ramie (Boehmeria nivea (L.) Gaudich) genotypes under nitrogen (N)-deficient and normal conditions to identify the transcriptomic expression patterns that contribute to ramie resilience to nitrogen deficiency. Two ramie genotypes with contrasting NUE were used in the study, including T29 (NUE = 46.01%) and T13 (NUE = 15.81%). Our results showed that high-NUE genotypes had higher gene expression under the control condition across 94 genes, including frontloaded genes such as GDSL esterase and lipase, gibberellin, UDP-glycosyltransferase, and omega-6 fatty acid desaturase. Seventeen stress-tolerance genes showed lower expression levels and varied little in response to N-deficiency stress in high-NUE genotypes. In contrast, 170 genes were upregulated under N deficiency in high-NUE genotypes but downregulated in low-NUE genotypes compared with the controls. Furthermore, we identified the potential key genes that enable ramie to maintain physiological resilience under N-deficiency stress, and categorized these genes into three groups based on the transcriptome and their expression patterns. The transcriptomic and clustering analysis of these nitrogen-utilization-related genes could provide insight to better understand the mechanism of linking among the three gene classes that enhance resilience in high-NUE ramie genotypes.


Author(s):  
Sujata SB ◽  
Nirakar SNP ◽  
Bishal B Batta ◽  
Ranjit K Nagireddy ◽  
S Sabarinathan ◽  
...  

Nitrogen (N) plays a major role in the growth and development of a plant. Extensive application of N fertilizers results in low N use efficiency (NUE) generated by N loss due to denitrification byammonia volatilization, surface runoff, and leaching in the soil-flood water system. Therefore, there is an urgent requirement for the development of rice varieties with high NUE, which may improve the yield and decrease the N application which is harmful to the environment. In the present study, variability and correlation of morpho-physiological traits among the rice genotypes under low N in hydroponic solution was carried out for further genotyping with Tolerance of Nitrogen Deficiency 1 TOND1 gene markers. The root parameters and traits associated with shoot growth observed from 30 days old rice seedlings under low N condition suggested that shoot length was positively associated with leaf and root number followed by root length. The genetic diversity was estimated among the 36 selected genotypes with TOND1 gene primers. A total of 14 alleles were identified with an average number of alleles of 2.33 per locus. Allele frequency ranged from 0.62 to 0.86 with an average of 0.76. Genetic Diversity index ranged from 0.23 to 0.46 with an average of 0.35. The observed heterozygosity ranged from 0.00 to 0.1429 with an average of 0.056. The PIC values ranged between 0.61 and 0.77 with an average of 0.69. The unweighted neighbour-joining dendrogram grouped the 36 genotypes into 3clusters, wherein the local land race IC517708 clustered with known N deficiency tolerant Tequing. Therefore, the identified N deficiency tolerant genotype may be used as donor in developing N use efficient cultivar.


2016 ◽  
Vol 141 (6) ◽  
pp. 555-562 ◽  
Author(s):  
Yiwei Jiang ◽  
Yaoshen Li ◽  
Gang Nie ◽  
Huifen Liu

Nitrogen greatly impacts plant growth and development. The objective of this study was to characterize growth, nitrogen use, and gene expression of perennial ryegrass (Lolium perenne) in response to increasing nitrogen supplies. Perennial ryegrass (cv. Inspire) was grown in sand culture and irrigated with a half-Hoagland solution amended with 0, 0.5, 1.0, 2.5, 5.0, and 7.5 mm nitrogen. Leaf tissues were harvested at 10 days (first cutting) and 20 days (second cutting) and roots were harvested at 20 days. The relatively higher N supply (2.0–7.5 mm) resulted in a larger amount of leaf fresh and dry weight but lower root fresh and dry weight, especially for the second cutting. Root:leaf ratio was higher under low N, but lower under the high N treatment. Leaf N content was relatively higher under 2.5, 5, and 7.5 mm N than under the other three treatments, while 2.5 mm N exhibited relatively higher leaf carbon content for both cuttings. Leaf C:N ratio and leaf nitrogen use efficiency (LNUE) decreased with increasing N supplies for the first cutting but were higher under low N (0–1.0 mm) for both cuttings. Leaf C:N ratio and LNUE did not differ among low N and LNUE also remained unchanged among high N for the second cutting. Root N content increased, but the root C:N ratio and root N use efficiency (RNUE) decreased with increasing N supplies, especially under 2.5, 5.0, and 7.5 mm N. Low (0.5 mm), moderate (2.5 mm), and high (7.5 mm) N were chosen to examine the expression level of NR encoding nitrate reductase and GS1b encoding glutamine synthetase. Treatment of 0.5 mm N had higher expression levels of leaf NR than other two treatments for both cuttings and a higher level of leaf GS for the second cutting. Expression of NR in the roots did not vary among treatments but the expression of GS increased under 2.5 and 7.5 mm, compared with the 0.5 mm N. Differential leaf and root growth and physiological responses to low N (0 to 1 mm) and to moderate to high N (2.5 to 7.5 mm) could be used for examining the natural variation of N use in diverse perennial ryegrass populations.


2022 ◽  
Vol 12 ◽  
Author(s):  
Qi Chen ◽  
Yanpeng Wang ◽  
Zhijun Zhang ◽  
Xiaomin Liu ◽  
Chao Li ◽  
...  

Arginine plays an important role in the nitrogen (N) cycle because it has the highest ratio of N to carbon among amino acids. In recent years, there has been increased research interest in improving the N use of plants, reducing the use of N fertilizer, and enhancing the tolerance of plants to N deficiency. Here, the function of arginine in the growth of apple (Malus hupehensis) under N deficiency was explored. The application of 100 μmol L–1 arginine was effective for alleviating N-deficiency stress. Exogenous arginine promoted the absorption and use of N, phosphorus (P), and potassium (K) under low N stress. The net photosynthetic rate, maximal photochemical efficiency of photosystem II, and chlorophyll content were higher in treated plants than in control plants. Exogenous arginine affected the content of many metabolites, and the content of many amino acids with important functions was significantly increased, such as glutamate and ornithine, which play an important role in the urea cycle. Half of the metabolites were annotated to specialized metabolic pathways, including the synthesis of phenolic substances, flavonoids, and other substances with antioxidant activity. Our results indicate that arginine promotes the plant photosynthetic capacity and alters amino acid metabolism and some antioxidants including phenolic substances and flavonoids to improve the tolerance of apple to N deficiency, possibly through the improvement of arginine content, and the absorption of mineral.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12152
Author(s):  
Zhiyuan Li ◽  
Hong Jiang ◽  
Huizhuan Yan ◽  
Xiumei Jiang ◽  
Yan Ma ◽  
...  

Flavonoids are phytochemicals present in medicinal plants and contribute to human health. Coreopsis tinctoria, a species rich in flavonoids, has long been used in traditional medicine and as a food resource. N (nitrogen) fertilization can reduce flavonoid accumulation in C. tinctoria. However, there is limited knowledge regarding N regulatory mechanisms. The aim of this study was to determine the effect of N availability on flavonoid biosynthesis in C. tinctoria and to investigate the relationship between C (carbon) and N metabolism coupled with flavonoid synthesis under controlled conditions. C. tinctoria seedlings were grown hydroponically under five different N levels (0, 0.625, 1.250, 2.500 and 5.000 mM). The related indexes of C, N and flavonoid metabolism of C. tinctoria under N variation were measured and analysed. N availability (low and moderate N levels) regulates enzyme activities related to C and N metabolism, promotes the accumulation of carbohydrates, reduces N metabolite levels, and enhances the internal C/N balance. The flavonoid content in roots and stalks remained relatively stable, while that in leaves peaked at low or intermediate N levels. Flavonoids are closely related to phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate: coenzyme A ligase (4CL), and chalcone-thioase (CHS) activity, significantly positively correlated with carbohydrates and negatively correlated with N metabolites. Thus, C and N metabolism can not only control the distribution of C in amino acid and carbohydrate biosynthesis pathways but also change the distribution in flavonoid biosynthesis pathways, which also provides meaningful information for maintaining high yields while ensuring the nutritional value of crop plants.


2020 ◽  
Author(s):  
Del Castello Fiorella ◽  
Foresi Noelia ◽  
Nejamkin Andrés ◽  
Lindermayr Christian ◽  
Buegger Franz ◽  
...  

ABSTRACTDeveloping strategies to improve nitrogen (N) use efficiency (NUE) in plants is a challenge to reduce environmental problems linked to over-fertilization. The nitric oxide synthase (NOS) enzyme from the cyanobacteria Synechococcus PCC 7335 (SyNOS) has been recently identified and characterized. SyNOS catalyzes the conversion of arginine to citrulline and nitric oxide (NO), and then 70% of the produced NO is rapidly oxidized to nitrate by an unusual globin domain in its 5'-terminus. In this study, we assessed whether SyNOS expression in plants affects N metabolism improving NUE and yield. Our results showed that transgenic Arabidopsis plants had higher primary shoot length and shoot branching when grown in N-deficient conditions and higher seed production in N-sufficient and -deficient conditions. Moreover, transgenic plants showed significantly increased NUE in both N conditions. No differences were observed in N uptake for SyNOS lines. However, SyNOS lines presented an increase in N assimilation/remobilization under low N conditions. In addition, SyNOS lines had greater N-deficiency tolerance compared to wt plants. Our results support that SyNOS expression generates a positive effect on N metabolism and seed production in Arabidopsis, and it might be envisaged as a strategy to improve productivity in crops under adverse N environments.


2019 ◽  
Vol 39 (9) ◽  
pp. 1614-1629 ◽  
Author(s):  
Haifeng Song ◽  
Zeyu Cai ◽  
Jun Liao ◽  
Duoteng Tang ◽  
Sheng Zhang

Abstract Nitrogen (N) is a key nutrient impacting plant growth and physiological processes. However, the supply of N is often not sufficient to meet the requirements of trees in many terrestrial ecosystems. Because of differences in production costs, male and female plants have evolved different stress resistance strategies for N limitation. However, little is known about differential gene expression according to sex in poplars responding to N limitation. To explore sex-related constitutive defenses, Populus cathayana Rehder transcriptomic, proteomic and metabolic analyses were performed on the roots of male and female Populus cathayana. We detected 16,816 proteins and 37,286 transcripts, with 2797 overlapping proteins and mRNAs in the roots. In combination with the identification of 90 metabolites, we found that N deficiency greatly altered gene expression related to N metabolism as well as carbohydrate metabolism, secondary metabolism and stress-related processes in both sexes. Nitrogen-deficient P. cathayana females exhibited greater root biomass and less inhibition of citric acid production and glycolysis as well as higher secondary metabolic activity and abscisic acid contents than N-deficient P. cathayana males. Interestingly, males presented a better osmotic adjustment ability and higher expression of resistance genes, suggesting that P. cathayana males exhibit a better stress tolerance ability and can invest fewer resources in defense compared with females. Therefore, our study provides new molecular evidence that P. cathayana males and females adopt different resistance strategies to cope with N deficiency in their roots.


2021 ◽  
Vol 22 (14) ◽  
pp. 7674
Author(s):  
Ting Liang ◽  
Zhengqing Yuan ◽  
Lu Fu ◽  
Menghan Zhu ◽  
Xiaoyun Luo ◽  
...  

Nitrogen (N) is an essential nutrient for plant growth and development. The root system architecture is a highly regulated morphological system, which is sensitive to the availability of nutrients, such as N. Phenotypic characterization of roots from LY9348 (a rice variety with high nitrogen use efficiency (NUE)) treated with 0.725 mM NH4NO3 (1/4N) was remarkable, especially primary root (PR) elongation, which was the highest. A comprehensive analysis was performed for transcriptome and proteome profiling of LY9348 roots between 1/4N and 2.9 mM NH4NO3 (1N) treatments. The results indicated 3908 differential expression genes (DEGs; 2569 upregulated and 1339 downregulated) and 411 differential abundance proteins (DAPs; 192 upregulated and 219 downregulated). Among all DAPs in the proteome, glutamine synthetase (GS2), a chloroplastic ammonium assimilation protein, was the most upregulated protein identified. The unexpected concentration of GS2 from the shoot to the root in the 1/4N treatment indicated that the presence of an alternative pathway of N assimilation regulated by GS2 in LY9348 corresponded to the low N signal, which was supported by GS enzyme activity and glutamine/glutamate (Gln/Glu) contents analysis. In addition, N transporters (NRT2.1, NRT2.2, NRT2.3, NRT2.4, NAR2.1, AMT1.3, AMT1.2, and putative AMT3.3) and N assimilators (NR2, GS1;1, GS1;2, GS1;3, NADH-GOGAT2, and AS2) were significantly induced during the long-term N-deficiency response at the transcription level (14 days). Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that phenylpropanoid biosynthesis and glutathione metabolism were significantly modulated by N deficiency. Notably, many transcription factors and plant hormones were found to participate in root morphological adaptation. In conclusion, our study provides valuable information to further understand the response of rice roots to N-deficiency stress.


Sign in / Sign up

Export Citation Format

Share Document