scholarly journals Effects of dietary supplementation with exogenous catalase on growth performance, oxidative stress, and hepatic apoptosis in weaned piglets challenged with lipopolysaccharide

2020 ◽  
Vol 98 (3) ◽  
Author(s):  
Yang Li ◽  
Xilun Zhao ◽  
Xuemei Jiang ◽  
Ling Chen ◽  
Liang Hong ◽  
...  

Abstract Two experiments were conducted to investigate the effects of exogenous catalase (CAT) in the diet of weaned piglets on growth performance, oxidative capacity, and hepatic apoptosis after challenge with lipopolysaccharide (LPS). In experiment 1, 72 weaned piglets [Duroc × Landrace × Yorkshire, 6.90 ± 0.01 kg body weight (BW), 21 d of age] were randomly assigned to be fed either a basal diet (CON group) or a basal diet supplemented with 2,000 mg/kg CAT (CAT group; dietary CAT activity, 120 U/kg) for 35 d. Blood samples were collected on day 21 and day 35. At the end of this experiment, 12 pigs were selected from each of the CON and CAT groups, and six pigs were injected with LPS (50 μg/kg BW), while the remaining six pigs were injected with an equal amount of sterile saline, resulting in a 2 × 2 factorial arrangement of treatments (experiment 2). Blood samples and rectal temperature data were collected 0 and 4 h after challenge, and liver samples were obtained after evisceration. The gain-to-feed ratio was higher (P < 0.05) in piglets in the CAT group than in those in the CON group from day 1 to 35. Catalase and total superoxide dismutase (T-SOD) activities were higher (P < 0.05), whereas malondialdehyde (MDA) concentrations were lower (P < 0.05), in piglets in the CAT group than in those in the CON group at day 35. During challenge, rectal temperature and liver MDA and H2O2 concentrations increased significantly (P < 0.05), whereas plasma CAT and glutathione peroxidase (GSH-Px) activities and liver CAT activity decreased markedly (P < 0.05), in LPS-challenged piglets 4 h post-challenge. Increased CAT activity and decreased MDA concentration were observed in the plasma and liver of piglets in the CAT group 4 h post-challenge (P < 0.05). Dietary CAT supplementation markedly suppressed the LPS-induced decrease in plasma GSH-Px activity and liver CAT activity to levels observed in the CON group (P < 0.05) as well as significantly decreasing the concentration and mRNA expression of caspase-3 and caspase-9 (P < 0.05). LPS-induced liver injury was also attenuated by dietary CAT supplementation, as demonstrated by a decrease in liver caspase-3 mRNA expression (P < 0.05). Overall, dietary supplementation with 2,000 mg/kg exogenous CAT (dietary CAT activity, 120 U/kg) improves growth performance and has a beneficial effect on antioxidant capacity in weaned piglets; alleviates oxidative stress and reduces liver damage by suppressing hepatic apoptosis in LPS-challenged piglets.

2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Diao ◽  
Jiayou Yan ◽  
Shuwei Li ◽  
Shengyao Kuang ◽  
Xiaolan Wei ◽  
...  

The present study aimed to investigate the effects of dietary zinc sources on the growth performance and gut health of weaned piglets. In total, 96 Duroc × Landrace × Yorkshire (DLY) weaned piglets with an initial average body weight of 8.81±0.42kg were divided into four groups, with six replicates per treatment and four pigs per replicate. The dietary treatment groups were as follows: (1) control group, basal diet; (2) zinc sulphate (ZnSO4) group, basal diet +100mg/kg ZnSO4; (3) glycine zinc (Gly-Zn) group, basal diet +100mg/kg Gly-Zn and (4) zinc lactate group, and basal diet +100mg/kg zinc lactate. The whole trial lasted for 28days. Decreased F/G was noted in the Gly-Zn and zinc lactate groups (p<0.05). The zinc lactate group had a lower diarrhea rate than the control group (p<0.05). Moreover, the ZnSO4, Gly-Zn, and zinc lactate groups had significantly higher apparent total tract digestibility of dry matter (DM), crude protein (CP), ether extract (EE), crude ash, and zinc than the control group (p<0.05). The Gly-Zn and zinc lactate groups had higher jejunal villus height and a higher villus height:crypt depth ratio than the control group (p<0.05). In addition, the ZnSO4, Gly-Zn and zinc lactate groups had a significantly lower mRNA expression level of jejunal ZRT/IRT-like protein 4 (ZIP4) and higher mRNA expression level of jejunal interleukin-1β (IL-1β) than the control group (p<0.05). The mRNA expression level of jejunal zinc transporter 2 (ZNT2) was higher and that of jejunal Bcl-2-associated X protein (Bax) was lower in the Gly-Zn and zinc lactate groups than in the control group (p<0.05). Moreover, the zinc lactate group had a higher count of Lactobacillus spp. in the cecal digesta and higher mRNA expression levels of jejunal occludin and mucin 2 (MUC2) than the control group (p<0.05). In conclusion, dietary supplementation with 100mg/kg ZnSO4, Gly-Zn, or zinc lactate could improve the growth performance and gut barrier function of weaned piglets. Dietary supplementation with organic zinc, particularly zinc lactate, had the best effect.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 212-213
Author(s):  
xia xiong ◽  
Lvliang Wu ◽  
Yirui Shao ◽  
Jian zou ◽  
Yulong Yin

Abstract Glucan has been studied as a potential alternative to antibiotics for animals in recent years. The aim of this study was to evaluate the effect of dietary glucan on growth performance and gut health of weaning piglets, which is a water-soluble extracellular ꞵ-glucan produced by Agrobacterium sp. ZX09. A total of 108 weaned piglets (21 d of age; 6.05 ± 0.36 kg) were randomly assigned (6 pens/diet; 18 piglets/pen) to 3 dietary treatments consisting of a basal diet (control group) or the basal diet supplemented with 20 ppm olaquindox or 200 ppm glucan for 14 days, respectively. The results showed that piglets fed with glucan had greater (P < 0.05) body weight and average daily gain than piglets in control group. Piglets fed with glucan or antibiotic had greater villus height to crypt depth ratio on duodenum compared with control group (P < 0.05). The mRNA expression of Claudin-1 on duodenum or ileum was higher (P < 0.05) in glucan group than that on the other groups. The mRNA expression of TLR4, MYD88 and NFκB on jejunum were lower (P < 0.05) in glucan or antibiotic group than those in control group. Dietary supplementation with glucan tended to increase the IL-10 and SIgA concentration on ileum (0.05 < P < 0.1). Dietary supplementation with glucan tended to increase the total antioxidant capacity on jejunum (P = 0.093). In conclusion, 200 ppm glucan or 20 ppm olaquindox can improve the growth performance of weaning piglets. The glucan may can accelerate the growth of weaned piglets by improving gut health. This research will provide guidance for the olaquindox alternative on growing piglets.


2020 ◽  
Vol 21 (8) ◽  
pp. 614-625 ◽  
Author(s):  
Andong Zha ◽  
Zhijuan Cui ◽  
Ming Qi ◽  
Simeng Liao ◽  
Lixin Chen ◽  
...  

Background: Deoxynivalenol contamination is increasing worldwide, presenting great challenges to food security and causing great economic losses in the livestock industry. Objective: This study was conducted to determine the protective effect of baicalin zinc as a dietary supplement on pigs fed with a deoxynivalenol contaminated diet. Methods: A total of 40 weaned pigs (21 d of age; 6.13 ± 0.42 kg average BW) were randomly assigned (10 pigs/group) to 4 dietary treatments: basal diet (Con group), basal diet + 4 mg/kg DON (DON group), basal diet + 5 g/kg BZN (BZN group), and basal diet + 5 g/kg BZN + 4 mg/kg DON (DBZN group) for a 14-d period. Seven randomly-selected pigs from each treatment were killed for blood and tissue sampling. Results: The results showed that piglets challenged with DON exhibited significantly reduced levels of ADG, ADFI, and F/G (p < 0.05). BZN supplemented diets significantly suppressed the protein expression of p-Nrf2, p-NF-kB, and HO-1 in the jejunum of DON challenged piglets (p < 0.05). In liver, DON markedly increased the mRNA expression of P70S6K and HSP70 in piglets fed the basal diet, but significantly reduced that of HO-1, NQO-1, NF-kB, AMPKα2 and HSP70 in piglets fed the BZN supplemented diet (p < 0.05). Dietary supplementation with BZN markedly increased the T-AOC level of serum in weaned piglets (p < 0.05). In jejunum, dietary supplementation with BZN activated the mRNA expression of ZIP4 in piglets (p < 0.05), BZN supplementation significantly suppressed the activity of sucrose and increased the protein concentration in chyme (p < 0.05). Conclusion: BZN can play a protective role by reducing oxidative stress and enhancing nutrient absorption in pigs fed DON-contaminated diets.


2020 ◽  
Vol 98 (2) ◽  
Author(s):  
Lanmei Yin ◽  
Jun Li ◽  
Huiru Wang ◽  
Zhenfeng Yi ◽  
Lei Wang ◽  
...  

Abstract Vitamin B6 (VB6), which is an essential functional substance for biosome, plays an irreplaceable role in animal health. However, there are few studies that focus on the correlation between VB6 and intestinal health in weaned piglets. This study was conducted to investigate the effects of VB6 on the growth performance, intestinal morphology, and inflammatory cytokines and amino acid (AA) transporters mRNA expression in weaned piglets that are fed a low crude-protein (CP, 18%) diet. Eighteen crossbred piglets with initial body weights of 7.03 ± 0.17 kg (means ± SEM), weaned at 21-d age, were randomly assigned three diets with 0, 4, and 7 mg/kg VB6 supplementation, respectively. The experimental period lasted 14 days. Our results showed that there were no significant differences in growth performance, diarrhea rate, and biochemical parameters among the three treatments. In the jejunum, dietary VB6 supplementation did not affect the morphology and positive Ki67 counts. Dietary supplementation with 4 mg/kg VB6 decreased the mRNA expression of COX-2, IL-10, and TGF-β (P &lt; 0.05). Dietary supplementation with 7 mg/kg VB6 increased the mRNA expression of SLC7A1, SLC7A6, SLC16A14, and SLC38A5 (P &lt; 0.05) and 4 or 7 mg/kg VB6 decreased SLC36A1 mRNA expression (P &lt; 0.05). In the ileum, VB6 supplementation did not affect positive Ki67 counts but significantly decreased villus area (P &lt; 0.05) and tended to decrease villus height (P = 0.093). Dietary supplementation with 4 mg/kg VB6 had significantly increased the mRNA expression of IL-1β, TNF-α, COX-2, IL-10, and TGF-β (P &lt; 0.05). Dietary supplementation with 4 or 7 mg/kg VB6 had significantly decreased SLC6A20, SLC7A1, SLC7A6, SLC16A14, and SLC38A5 mRNA expression (P &lt; 0.05). These findings suggest that dietary supplementation of VB6 mainly down-regulated inflammatory cytokines and up-regulated AA transporters mRNA expression in jejunum, while up-regulated (4 mg/kg) inflammatory cytokines and down-regulated AA transporters mRNA expression in ileum, which may provide a reference for the intestinal development of weaned piglets that are fed a low-CP diet.


2014 ◽  
Vol 54 (5) ◽  
pp. 616 ◽  
Author(s):  
Xiaoli Dong ◽  
Naifeng Zhang ◽  
Meng Zhou ◽  
Yan Tu ◽  
Kaidong Deng ◽  
...  

This study was conducted to evaluate the effects of dietary supplementation with probiotics on growth performance, faecal microbiota, and serum profiles in weaned piglets. Large White × Landrace piglets (n = 144) weaned at 35–37 days of age were selected and divided into four groups, and the piglets from each group were assigned randomly to six pens (replicates) with six animals each. Each group was fed one of four diets for 5 weeks: a basal diet without antibiotics and probiotics (control), or the basal diet supplemented with Lactobacillus plantarum GF103, Bacillus subtilis B27, or a mixture of L. plantarum GF103 and B. subtilis B27. During the first 2 weeks of the supplementation, the piglets supplemented with probiotics had lower (P < 0.05) average daily feed intake than control piglets. The feed conversion ratio was improved (P < 0.05) in probiotic-supplemented groups compared with that of control. The population of E. coli in faeces of the piglets supplemented with L. plantarum GF103 was lower (P < 0.05) than that of control piglets. On day 14, dietary supplementation of the combination of L. plantarum GF103 and B. subtilis B27 increased (P < 0.05) the serum concentrations of total protein, globulin, and creatinine, but decreased (P < 0.05) the ratio of serum albumin to serum globulin, compared with the basal diet. On day 14, dietary supplementation with probiotics increased (P < 0.05) the serum IgM concentration compared with the basal diet. Supplementation of B. subtilis B27 or the combination of L. plantarum GF103 and B. subtilis B27 increased (P < 0.05) the serum IgA concentration at the end of the trial. These results suggest that dietary probiotics improved growth performance and enhanced immune responses at the early stage of the post-weaning period in piglets.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiao-Long Wang ◽  
Zhu-Ying Liu ◽  
Ying-Hui Li ◽  
Ling-Yuan Yang ◽  
Jie Yin ◽  
...  

Lactobacillus delbrueckii is a Gram-positive bacterium mostly used in the dairy industry for yogurt and cheese. The present study was designed to evaluate the effects of Lactobacillus delbrueckii on serum biochemical parameters, intestinal morphology, and performance by supplementing at a dietary level of 0.1% in diets for weaned piglets. Eighty healthy weaned piglets (initial body weight: 7.56 ± 0.2 kg) were randomly divided into two feeding groups with four replicates in each group (n = 10 animals per replicate); piglets were fed with basal diet (CON) or basal diet containing 0.1% Lactobacillus delbrueckii (LAC). The results showed that dietary supplementation of Lactobacillus delbrueckii improved growth performance and increased serum HDL and insulin levels in piglets on the 28th day of the experimental time (p &lt; 0.05). The gut microbe analysis revealed that Lactobacillus delbrueckii significantly decreased the relative abundance of the phyla Bacteroidetes, but increased the relative abundance of the phyla Firmicutes. The Lactobacillus delbrueckii also significantly increased the relative abundance of Bifidobacterium and Lactobacillus at the genus level of the bacterial community in the ileum, but decreased the relative abundance of unclassified Clostridiales. Moreover, Lactobacillus delbrueckii improved mucosal morphology by obtaining higher intestinal villus height (p &lt; 0.05), significantly increasing the concentrations of butyrate, isobutyric acid, and isovaleric acid in colonic chyme of piglets, but decreasing the intestinal pH at the duodenum and ileum on the 28th day of the experimental time. In conclusion, dietary supplementation of Lactobacillus delbrueckii in the diet of weaned piglets can improve intestinal morphology and modulate the microbiota community to promote growth performance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhihua Li ◽  
Qian Zhu ◽  
Md. Abul Kalam Azad ◽  
Huawei Li ◽  
Pan Huang ◽  
...  

This study investigated the effects of dietary supplementation with fermented Mao-tai lees (FML) on growth performance, plasma metabolites, and intestinal microbiota and metabolites of weaned piglets. A total of 128 Duroc×Landrace×Yorkshire piglets (28-days old) were randomly assigned to one of four groups, feeding a basal diet (control group), a basal diet supplemented with 2, 4 or 6% FML, respectively, for 42days. The results showed that dietary 4% FML supplementation had higher (p&lt;0.05) average daily gain (ADG) and plasma triglyceride concentration during days 1–14 of the trial than the other FML supplemented groups. In addition, dietary 2 and 4% FML supplementation increased (p&lt;0.05) the ADG during days 15–28 of the trial and plasma total protein concentration on day 42 of the trial compared with the 6% FML supplement. The plasma concentrations of arginine, ethanolamine, histidine, isoleucine, lysine, methionine, proline, taurine, threonine, and tyrosine were increased (p&lt;0.05) in the 4% FML group compared with the other three groups on day 14 of the trial. Dietary supplementation with 2–6% FML decreased (p&lt;0.05) the plasma urea nitrogen concentration on day 14 of the trial and the abundance of Escherichia coli in the colon, and dietary 2 and 4% FML supplementation decreased (p&lt;0.05) the abundance of sulfate-reducing bacteria compared with the control group. In the intestinal contents, a higher concentration of FML (6%) supplementation decreased (p&lt;0.05) the colonic acetate concentration compared with the control and 2% FML groups, while 4% FML supplementation increased (p&lt;0.05) the colonic cadaverine concentration compared with the other three groups. In conclusion, dietary 4% FML supplementation might contribute to the increased amino acids metabolism without affecting the growth performance of weaned piglets. Moreover, dietary 2 and 4% FML supplementation were also beneficial to intestinal health via decreasing the abundances of specific pathogens and increasing the concentrations of microbial metabolites in the gut, which provides the theoretical basis and data support for the application of FML in pigs.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Gang Liu ◽  
Lei Yu ◽  
Yordan Martínez ◽  
Wenkai Ren ◽  
Hengjia Ni ◽  
...  

This research aims to evaluate the effects of dietary supplementation with Saccharomyces cerevisiae cell wall extract (SCCWE) on growth performance, oxidative stress, intestinal morphology, and serum amino acid concentration in weaned piglets. Utilizing a completely randomized design, 40 healthy piglets weaned at 21 d were grouped into 4 experimental treatments with 10 pigs per treatment group. Treatments consisted of a basal diet (T0), a basal diet with a 0.05% SCCWE (T1), a basal diet with a 0.10% SCCWE (T2), and a basal diet with a 0.15% SCCWE (T3). SCCWE supplementation increased the average daily gain and final body weight compared with T0 (P<0.05). SCCWE in T2 and T3 improved the average daily feed intake and decreased the feed/gain ratio compared with T1 and T2 (P<0.05). SCCWE decreased serum malondialdehyde (MDA) and increased activities of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) significantly compared to T0 (P<0.05). SCCWE increased the concentration of Ile compared to T0 (P<0.05). Moreover, the concentrations of Leu, Phe, and Arg were higher in T2 and T3 (P<0.05). These findings indicate beneficial effects of SCCWE supplementation on growth performance, the concentration of some essential amino acids, and alleviation of oxidative stress in weaned piglets.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 196-197
Author(s):  
Woo Jung Seok ◽  
Je min Ahn ◽  
Jing Hu ◽  
Dexin Dang ◽  
Yanjiao Li ◽  
...  

Abstract The objective of this study was to evaluate the effects of dietary supplementation of coated omega-3 fatty acid (n-3 CFA) by corn cob power silica on performance of weaning pigs. A total of 200 weaned pigs [(Landrace x Yorkshire) x Duroc, average initial body weight at 6.97 ± 1.22 kg] were randomly assigned to four experimental treatments in a 6-week experiment in 3 phases as follows: CON, basal diet; 2) 0.3CFA, CON + phase 1(0.3% n-3CFA), phase 2(0.2% n-3CFA), phase 3(0.1% n-3CFA); 3) 0.6CFA, CON + phase 1(0.6% n-3CFA), phase 2(0.4% n-3CFA), phase 3(0.2% n-3CFA); 4) 0.9CFA, CON + phase 1(0.9% n-3CFA), phase 2(0.6% n-3CFA), phase 3 (0.3% n-3CFA). Each treatment had 10 replicates with 5 pigs (three gilts and two barrows) per replicate. The data were analyzed using the GLM procedure of SAS as a randomized complete block design. Pen served as the experimental unit. Linear, quadratic and cubic polynomial contrasts were used to examine effect of dietary treatment with coated n-3FA in the basal diet. Variability in the data was expressed as the standard error of means and P&lt; 0.05 was considered to statistically significant. Increasing the level of n-3CFA in the diet linearly increased ADG and G/F of pigs (Table 1). Increasing the level of n-3CFA showed a linear increment in the digestibility of DM (83.59, 84.38, 85.13, 85.89 %) whereas nitrogen digestibility (81.79, 82.38, 82.96, 83.64 %) showed a trend (linear effect, p=0.0594) at the end of experiment. The fecal lactobacillus count was increased (7.22, 7.27, 7.33, 7.35 log10cfu/g) with the increase in the supplemental level of n-3CFA (linear effect; p&lt; 0.05). However, there were no differences in the concentration of serum haptoglobin, or fecal E. coli, Clostridium and Salmonella counts despite the increase in n-3CFA levels in the diet. Supplementation of the diet with coated n-3 fatty acids positively affected growth performance and digestibility of dry matter and nitrogen, and enhanced the count of lactobacillus in weaning pigs.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 202-203
Author(s):  
Sudario Roberto Silva Junior ◽  
Maíra Resende ◽  
Rhuan F Chaves ◽  
Jéssica Aparecida Barbosa ◽  
Iana I M Ferreira ◽  
...  

Abstract Benzoic acid (BA) and essential oils (EO) can minimize growth performance losses due to the removal of antibiotics and change the intestinal health of weaned piglets. The objective of this study was to evaluate the effects of BA and EO on inflammatory response, diarrhea incidence, and growth performance of the nursery phase. One hundred and twenty barrows were weaned at 23 days (6.40 ± 0.53 kg) and assigned into 3 treatments (10 replicates) in randomized block design: basal diet without additives (NC), basal diet with 200 ppm of colistin sulphate (PC), and association of 0,3% benzoic acid and essential oil (BA+EO). The feed intake and body weight were recorded at 0 and 42 days. The feces were assessed daily (per animal) and graded as normal feces (no diarrhea) or liquid or pasty stools (presence of diarrhea). On days 1, 3, and 9, blood samples were collected (5 replicates) for white blood cells (WBC) counts. Growth performance was analyzed by MIXED procedure (SAS, 2009) and the Tukey test was used to compare the means (P &lt; 0.050). The WBC counts were analyzed by repeated-measures analysis of variance, by MIXED procedure. Diarrhea incidence was analyzed by GENMOD procedure (SAS, 2009). The BA+EO treatment showed a similar body weight (P = 0.014) and average daily gain (P = 0.012) than the PC group and lower feed conversion ratio (P = 0.037) compared to the NC group. The pigs of the BA+EO treatment had the lowest diarrhea incidence during the total period (P &lt; 0.001). The supplementation with BA+EO or antibiotics reduced the counts of total WBC (P = 0.008) and neutrophils (P = 0.003). In conclusion, supplementation with BA+EO reduces the inflammatory response and the incidence of diarrhea in the nursery phase, that may be related to the improvement in the FCR.


Sign in / Sign up

Export Citation Format

Share Document