scholarly journals Dietary pterostilbene supplementation attenuates intestinal damage and immunological stress of broiler chickens challenged with lipopolysaccharide

2019 ◽  
Vol 98 (1) ◽  
Author(s):  
Hao Zhang ◽  
Yanan Chen ◽  
Yueping Chen ◽  
Yue Li ◽  
Peilu Jia ◽  
...  

Abstract The present study explored the potential effect of pterostilbene as a prophylactic treatment on the lipopolysaccharide (LPS)-induced intestinal injury of broiler chickens by monitoring changes in mucosal injury indicators, redox status, and inflammatory responses. In total, 192 one-day-old male Ross 308 broiler chicks were randomly divided into four groups. This trial consisted of a 2 × 2 factorial design with a diet factor (supplemented with 0 or 400 mg/kg pterostilbene from 1 to 22 d of age) and a stress factor (intraperitoneally injected with saline or LPS at 5.0 mg/kg BW at 21 da of age). The results showed that LPS challenge induced a decrease in BW gain (P < 0.001) of broilers during a 24-h period postinjection; however, this decrease was prevented by pterostilbene supplementation (P = 0.031). Administration of LPS impaired the intestinal integrity of broilers, as indicated by increased plasma diamine oxidase (DAO) activity (P = 0.014) and d-lactate content (P < 0.001), reduced jejunal villus height (VH; P < 0.001) and the ratio of VH to crypt depth (VH:CD; P < 0.001), as well as a decreased mRNA level of jejunal tight junction protein 1 (ZO-1; P = 0.002). In contrast, pterostilbene treatment increased VH:CD (P = 0.018) and upregulated the mRNA levels of ZO-1 (P = 0.031) and occludin (P = 0.024) in the jejunum. Consistently, pterostilbene counteracted the LPS-induced increased DAO activity (P = 0.011) in the plasma. In addition, the LPS-challenged broilers exhibited increases in nuclear accumulation of nuclear factor kappa B (NF-κB) p65 (P < 0.001), the protein content of tumor necrosis factor α (P = 0.033), and the mRNA abundance of IL-1β (P = 0.042) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3; P = 0.019). In contrast, pterostilbene inhibited the nuclear translocation of NF-κB p65 (P = 0.039) and suppressed the mRNA expression of IL-1β (P = 0.003) and NLRP3 (P = 0.049) in the jejunum. Moreover, pterostilbene administration induced a greater amount of reduced glutathione (P = 0.017) but a lower content of malondialdehyde (P = 0.023) in the jejunum of broilers compared with those received a basal diet. Overall, the current study indicates that dietary supplementation with pterostilbene may play a beneficial role in alleviating the intestinal damage of broiler chicks under the conditions of immunological stress.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Ashok Kumar Pandurangan ◽  
Salmiah Ismail ◽  
Zeinab Saadatdoust ◽  
Norhaizan Mohd. Esa

The objective of this study is to evaluate the effect of allicin (10 mg/kg body weight, orally) in an experimental murine model of UC by administering 2.5% dextran sodium sulfate (DSS) in drinking water to BALB/c mice. DSS-induced mice presented reduced body weight, which was improved by allicin administration. We noted increases in CD68 expression, myeloperoxidase (MPO) activities, and Malonaldehyde (MDA) and mRNA levels of proinflammatory cytokines, such astumor necrosis factor- (TNF-)α, interleukin- (IL-) 1β, IL-6, andIL-17, and decrease in the activities of enzymic antioxidants such as superoxide dismutase (SOD), Catalase (CAT), Glutathione reductase (GR), and Glutathione peroxidase (GPx) in DSS-induced mice. However, allicin treatment significantly decreased CD68, MPO, MDA, and proinflammatory cytokines and increased the enzymic antioxidants significantly (P<0.05). In addition, allicin was capable of reducing the activation and nuclear accumulation of signal transducer and activator of transcription 3 (STAT3), thereby preventing degradation of the inhibitory protein IκB and inducing inhibition of the nuclear translocation of nuclear factor (NF)-κB-p65 in the colonic mucosa. These findings suggest that allicin exerts clinically useful anti-inflammatory effects mediated through the suppression of the NF-κB and IL-6/p-STAT3Y705pathways.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 611 ◽  
Author(s):  
Yunchang Zhang ◽  
Xiaoshi Ma ◽  
Da Jiang ◽  
Jingqing Chen ◽  
Hai Jia ◽  
...  

Glycine supplementation has been reported to alleviate lipopolysaccharide (LPS)-induced lung injury in mice. However, the underlying mechanisms responsible for this beneficial effect remain unknown. In the present study, male C57BL/6 mice were treated with aerosolized glycine (1000 mg in 5 mL of 0.9% saline) or vehicle (0.9% saline) once daily for 7 continuous days, and then were exposed to aerosolized LPS (5 mg in 5 mL of 0.9% saline) for 30 min to induce lung injury. Sera and lung tissues were collected 24 h post LPS challenge. Results showed that glycine pretreatment attenuated LPS-induced decreases of mucin at both protein and mRNA levels, reduced LPS-triggered upregulation of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interferons, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukins. Further study showed that glycine-reduced LPS challenge resulted in the upregulation of nuclear factor κB (NF-κB), nucleotide binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. In addition, LPS exposure led to the downregulation of NRF2 and downstream targets, which were significantly improved by glycine administration in the lung tissues. Our findings indicated that glycine pretreatment prevented LPS-induced lung injury by regulating both NLRP3 inflammasome and NRF2 signaling.


2006 ◽  
Vol 190 (2) ◽  
pp. 527-535 ◽  
Author(s):  
Gideon Hen ◽  
Sara Yosefi ◽  
Victoria Simchaev ◽  
Dmitry Shinder ◽  
Victor J Hruby ◽  
...  

Agonists of membranal melanocortin 3 and 4 receptors (MC3/4Rs) are known to take part in the complex control mechanism of energy balance. In this study, we compared the physiological response to an exogenous MC3/4R agonist and the hypothalamic expression of proopic melanocortin (POMC) gene, encoding few MC3/4R ligands, between broiler and layer chicken strains. These strains, representing the two most prominent commercial strains of chickens grown for meat (broilers) and egg production (layers), differ in their food intake, fat accumulation, and reproductive performance and, therefore, form a good model of obese and lean phenotypes, respectively. A single i.v. injection of the synthetic peptide melanotan-II (MT-II; 1 mg/kg body weight) into the wing vein of feed-restricted birds led to attenuation of food intake upon exposure to feeding ad libitum in both broiler and layer chickens. A study of the POMC mRNA encoding the two prominent natural MC3/4R agonists, α-MSH and ACTH, also revealed a general similarity between the strains. Under feeding conditions ad libitum, POMC mRNA levels were highly similar in chicks of both strains and this level was significantly reduced upon feed restriction. However, POMC mRNA down-regulation upon feed restriction was more pronounced in layers than in broilers. These results suggest: (i) a role for MC3/4R agonists in the control of appetite; (ii) that the physiological differences between broilers and layers are not related to unresponsiveness of broiler chickens to the satiety signal of MC3/4R ligands. Therefore, these findings suggest that artificial activation of this circuit in broiler chicks could help to accommodate with their agricultural shortcomings of overeating, fattening, and impaired reproduction.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 575 ◽  
Author(s):  
Jingle Jiang ◽  
Lina Qi ◽  
Zengpeng Lv ◽  
Song Jin ◽  
Xihui Wei ◽  
...  

The study was conducted to investigate the effects of dietary stevioside (STE) supplementation on the lipopolysaccharide (LPS)-induced intestinal mucosal damage of broiler chickens. A total of 192 one-day-old male Ross 308 broiler chicks were randomly divided into four treatments: (1) basal diet (CON); (2) basal diet supplemented with 250 mg/kg stevioside (STE); (3) basal diet + LPS-challenge (LPS); (4) basal diet supplemented with 250 mg/kg stevioside + LPS-challenge (LPS + STE). LPS-challenged groups received an intraperitoneal injection of LPS at 17, 19 and 21 d, whereas the CON and STE groups received a saline injection. The results showed that dietary STE supplementation normalized LPS-induced changes in protein expression of p-NF-κB and p-IκBα, mRNA expression of inflammatory genes (TLR4, NF-κB, and IFN-γ), tight junction-related genes (CLDN2, OCLN, and ZO-1), and antioxidant genes (Nrf2 and HO-1). LPS-induced decreases in serum diamine oxidase (DAO) level, villus height-to-crypt depth ratio, apoptotic index, and protein expression of proliferating cell nuclear antigen (PCNA) were reversed with dietary STE supplementation. Additionally, STE supplementation ameliorated the redox damage by reducing malondialdehyde (MDA) content and increasing total antioxidant capacity (T-AOC) and antioxidant enzyme activity. In conclusion, dietary stevioside supplementation could alleviate LPS-induced intestinal mucosal damage through anti-inflammatory and antioxidant effects in broiler chickens.


2016 ◽  
Vol 11 (12) ◽  
pp. 1934578X1601101 ◽  
Author(s):  
Ken Shirato ◽  
Jun Takanari ◽  
Takuya Sakurai ◽  
Junetsu Ogasawara ◽  
Kazuhiko Imaizumi ◽  
...  

We recently reported that enzyme-treated asparagus extract (ETAS) attenuates hydrogen peroxide (H2O2)-stimulated matrix metalloproteinase-9 expression in skin fibroblast L929 cells. To further elucidate the anti-aging effects of ETAS on skin, we examined whether ETAS has preventive effects on H2O2-induced pro-inflammatory responses of skin fibroblasts. H2O2 induced Ser536 phosphorylation and nuclear accumulation of nuclear factor-κB (NF-κB) p65, and increased the mRNA levels of interleukin-12α (IL-12α) and inducible nitric oxide synthase (iNOS) in L929 cells. Pretreatment of the cells with JSH-23, an inhibitor of NF-κB nuclear translocation, abolished the H2O2-induced expression of IL-12α and iNOS, indicating that the increased transcription is regulated by p65. The H2O2-stimulated nuclear accumulation of p65 and induction of IL-12α and iNOS mRNA were significantly attenuated after pretreatment with ETAS for 3 h, and these responses were completely abolished when the duration was extended to 24 h. However, ETAS did not affect the H2O2-stimulated degradation of IκBα and phosphorylation of p65. On the other hand, ETAS treatment for 24 h resulted in decreased protein levels of importin-α. These results suggest that ETAS prevents pro-inflammatory responses by suppressing the p65 nuclear translocation in skin fibroblasts induced by H2O2.


Author(s):  
Jingfei Zhang ◽  
Yuxiang Yang ◽  
Hongli Han ◽  
Lili Zhang ◽  
Tian Wang

Abstract Bisdemethoxycurcumin has good antioxidant and anti-inflammatory effects and has been widely used as food and feed supplements in the form of curcuminoids. However, the beneficial effect of individual bisdemethoxycurcumin on preventing lipopolysaccharide (LPS)-induced inflamed intestinal damage is unclear. The present study aimed to investigate whether dietary bisdemethoxycurcumin supplementation could attenuate LPS-induced intestinal damage and alteration of cecal microbiota in broiler chickens. In total, 320 one-day-old male Arbor Acres broiler chickens with a similar weight were randomly divided in four treatments. The treatments were designed as a 2 × 2 factorial arrangement: basal diet (CON); 150 mg/kg bisdemethoxycurcumin diet (BUR); LPS challenge + basal diet (LPS); LPS challenge + 150 mg/kg bisdemethoxycurcumin diet (L-BUR). Results showed that dietary bisdemethoxycurcumin supplementation attenuated the LPS-induced decrease of average daily feed intake. LPS challenge compromised the intestinal morphology and disrupted the intestinal tight junction barrier. Dietary bisdemethoxycurcumin supplementation significantly increased villus length:crypt depth ratio and up-regulated the mRNA expression of intestinal tight junction proteins. Moreover, a remarkably reduced mRNA expression of inflammatory mediators was observed following bisdemethoxycurcumin supplementation. The cecal microbiota analysis showed that bisdemethoxycurcumin supplementation increased the relative abundance of the genus Faecalibacterium while decreased the relative abundance of the genera Bacteroides and Subdoligranulum. In conclusion, dietary bisdemethoxycurcumin supplementation could counteract LPS-induced inflamed intestinal damage in broiler chickens by improving intestinal morphology, maintaining intestinal tight junction, down-regulating pro-inflammatory mediators, and restoring cecal microbiota.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14045-e14045
Author(s):  
Natalia Sutherland ◽  
Stacie Deaver ◽  
Taylor Wynne ◽  
Christina Wheeler ◽  
Samy Lamouille

e14045 Background: Glioblastoma multiforme (GBM) is the most commonly occurring and most lethal primary central nervous system tumor. Treatment for GBM involves an aggressive combination of surgical resection, radiotherapy, and temozolomide chemotherapy. While intensive therapy has shown marginal improvement in prognosis, the median survival for GBM patients remains between twelve to fourteen months. The aggressiveness of GBM is attributed to the cellular heterogeneity and the invasive nature of the tumor, as well as the presence of glioblastoma cancer stem cells (GSCs). GSCs are a subpopulation of slowly dividing cells within GBM tumors that can survive chemotherapy and irradiation treatments targeting proliferating cells. The remaining quiescent GSCs can then enter an active state of self-renewal and differentiation through asymmetric division that contributes to tumor recurrence by recapitulating the heterogeneous tumor in relatively short order. Previously, we have identified a non-junctional, tumorigenic function for the gap junction protein connexin43 (Cx43) through its interaction with microtubules in GSCs. However, when GSCs are differentiated, this interaction decreases while Cx43 expression increases, suggesting an alternate function for Cx43. Bone Morphogenic Proteins (BMPs) have been implicated in GSC differentiation and their role in human tumorigenesis has remained largely unknown in GSCs. In this study, we aim to determine the effect of BMP on Cx43 expression and localization in GSCs. Methods: In this study, we used GBM patient-derived GSCs isolated from two GBM tumors following resection at Carilion Clinic, and maintained in stem cell medium. The effect of BMP4 signaling on Cx43 expression and localization in GSCs was determined using RT-qPCR, immunofluorescence, western blot, and co-immunoprecipitation. Results: Preliminary data show that BMP4 treatment increases Cx43 expression at the protein and mRNA levels through nuclear translocation and transcriptional activity of β-catenin. In addition, BMP4 treatment increases the interaction between Cx43 and β-catenin at the plasma membrane. Further studies are underway to determine the implications of disrupting Cx43/β-catenin interaction in GSC differentiation. Conclusions: While additional experiments are needed, our findings may be adapted as a prognostic indicator to determine patients’ susceptibility to traditional GBM therapies, and aid in novel therapeutic development to eradicate GSCs in GBM and prevent tumor recurrence following treatment.


2015 ◽  
Vol 95 (3) ◽  
pp. 389-395 ◽  
Author(s):  
Yun Jiang ◽  
Weihui Zhang ◽  
Feng Gao ◽  
Guanghong Zhou

Jiang, Y., Zhang, W., Gao, F. and Zhou, G. 2015. Effect of sodium butyrate on intestinal inflammatory response to lipopolysaccharide in broiler chickens. Can. J. Anim. Sci. 95: 389–395. The aim of this study was to investigate the effect of sodium butyrate (SB) supplementation on intestinal inflammatory response to lipopolysaccharide (LPS) in broiler chickens. A total of 120 one-day-old chickens (Arbor Acres) were divided into two groups and fed a control diet (without SB) or 1.00 g SB kg−1 diet. Half of the chickens fed each diet were injected intra-peritoneally with 0.5 g kg−1 body weight of Escherichia coli LPS at 16, 18 and 20 d of age. The results showed that the LPS challenge decreased (P<0.05) villus height and the ratio of villus height to crypt depth (V/C ratio), increased (P<0.01) crypt depth of the duodenum. SB supplementation increased (P<0.05) villus height, crypt depth and V/C ratio of the duodenum and jejunum, except for the crypt depth of the jejunum. The LPS challenge increased (P<0.05) myeloperoxidase (MPO) activities, intercellular adhesion molecule-1 (ICAM-1) and activated nuclear factor kappa B (NF-κB) levels in mucosa of the duodenum and jejunum, while decreasing (P<0.05) insulin-like growth factor-1 (IGF-1) concentrations. The LPS challenge increased (P<0.05) the mRNA levels of interleukin-1beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in duodenal mucosa. SB supplementation decreased (P<0.05) the MPO activities and mRNA expression of TNF-α in the duodenal mucosa, and the activated NF-κB levels in mucosa of the duodenum and jejunum. There were no significant interactions between dietary SB and LPS on the histomorphology of the small intestine and those inflammatory mediators except for MPO and ICAM-1 in duodenal mucosa (P<0.05). The results indicate that SB supplementation could improve the intestinal morphology and function of broiler chickens and partially attenuate inflammatory responses caused by LPS challenge but not involving NF-κB activation.


2016 ◽  
Vol 6 (1) ◽  
pp. 846-852
Author(s):  
Olugbenga Adeniran Ogunwole ◽  
B. C Majekodunmi ◽  
R. A Faboyede ◽  
D. Ogunsiji

Effects of supplemental dietary lysine and methionine in a Groundnut Cake (GNC) based diets on meat and bone characteristics of broiler chickens were investigated. In a completely randomized design, a total of 168 one - day – old Arbor acre broiler chicks were randomly allocated to seven dietary treatments each in triplicate of eight birds per replicate. The Seven starter and finishers’ diets were: GNC based diets without any amino acid (lysine or methionine) supplementation (T1); GNC diet + 0.2% lysine (T2); GNC diet + 0.4% lysine (T3); GNC diet + 0.2% methionine (T4); GNC diet + 0.4% methionine (T5); GNC diet + 0.2 lysine and 0.2% methionine (T6) and GNC diet + 0.4% lysine and 0.4% methionine (T7). Experimental diets and water were offered to birds ad libitum in an experiment lasting six-week. At day 42, two birds per replicate were slaughtered, meat and bone characteristics determined. There were significant variations (P<0.05) in the crude protein (%) and ether extract (%), pH1 and pH2 of meat. Thiobarbituric acid reactive substances composition of meat at days 0, 5, and 10 were similar (P<0.05) and were not affected by dietary amino acid supplementation. Tibiotarsal index (mg/mm) of bone (22.10, 27.25, 33.35, 31.40, 28.70, 31.45 and 29.75 for broilers on T1, T2, T3, T4, T5, T6 and T7, respectively) were increased significantly (P<0.05) by amino acid supplementation. Significantly differences (P<0.05) were observed in the calcium, phosphorus and potassium (%) contents of broilers’ bone across treatments. Supplemental lysine and both lysine and methionine improved meat quality and bone development of broiler chickens in this study.


2014 ◽  
Vol 3 (1) ◽  
pp. 150-157
Author(s):  
Khalid M. Gaafar

The research was conducted to study the effect of feeding broiler chickens on diets containing isomaltooligosaccharides on the growth performance, carcass traits and immune response. 90-one day old broiler chicks were used according to completely randomized two treatment groups and one control, 30 birds each. Birds fed ad-libitum on basal starter and grower-finisher diets for 35 day. Diets of treatment`s groups contained 0.5 g/Kg and 1 g/Kg of Isomaltooligosaccharides, while the control group fed on the basal diets without Isomaltooligosaccharides supplementation. Dietary supplementation of broiler chickens with Isomaltooligosaccharides improved body weight, feed conversion, carcass traits, two lymphoid organs weight and log antibody titer against avian flu vaccine. Most of the highest values were for birds fed low levels of Isomaltooligosaccharides. Feed intake decreases as Isomaltooligosaccharides level increases. Dietary supplementation with Isomaltooligosaccharides did not affect the lipids profile (triglycerides, total cholesterol, LDL and HDL), however the blood VLDL levels decreased with increased levels of Malondialdehyde and Glutathione reductase. Collectively, Dietary supplementation of broiler chickens with 0.5 g/Kg diet of Isomaltooligosaccharides improved growth performance, carcass traits and immune status.


Sign in / Sign up

Export Citation Format

Share Document