Mitigating Stress Response to Optimize Human Performance

Author(s):  
James Ness ◽  
Josephine Q. Wojciechowski

Optimizing human performance is the expression of a desired phenotype to meet the challenges of a particular task. Desired phenotypes are expressed in response to canalizing experiences such as in acclimatization to environments. Here one’s biobehavioral system adapts to the challenges of the environment to reduce physiologic strain on the system. These adaptations are within the biobehavioral system’s repertoire of expressible phenotypes and are reversible. Desired phenotypes can be maintained, facilitated, or induced by canalizing experiences. In the desire to optimize performance, the canalizing experiences are often designed to induce or prolong phenotypic expression to meet the demands of a constructed task. In these cases, the canalizing experiences, whether pharmacological or other physiologically invasive, often lead to irreversible negative health consequences. This chapter discusses the effects of canalizing experiences in terms of the strains on the biobehavioral system. The chapter advances a concept of strong environment as a means to facilitate and maintain phenotypes, which are within the phenotypic expressible repertoire. The argument is made that leveraging the bio-behavioral system’s wild type rather than domesticating the system to express a supernormal phenotype yields greater agility and overall health in a population to overcome challenges.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 767
Author(s):  
Kamar Hamade ◽  
Ophélie Fliniaux ◽  
Jean-Xavier Fontaine ◽  
Roland Molinié ◽  
Elvis Otogo Nnang ◽  
...  

Lignans, phenolic plant secondary metabolites, are derived from the phenylpropanoid biosynthetic pathway. Although, being investigated for their health benefits in terms of antioxidant, antitumor, anti-inflammatory and antiviral properties, the role of these molecules in plants remains incompletely elucidated; a potential role in stress response mechanisms has been, however, proposed. In this study, a non-targeted metabolomic analysis of the roots, stems, and leaves of wild-type and PLR1-RNAi transgenic flax, devoid of (+) secoisolariciresinol diglucoside ((+) SDG)—the main flaxseed lignan, was performed using 1H-NMR and LC-MS, in order to obtain further insight into the involvement of lignan in the response of plant to osmotic stress. Results showed that wild-type and lignan-deficient flax plants have different metabolic responses after being exposed to osmotic stress conditions, but they both showed the capacity to induce an adaptive response to osmotic stress. These findings suggest the indirect involvement of lignans in osmotic stress response.


Author(s):  
Ai-Hua Wang ◽  
Lan Yang ◽  
Xin-Zhuan Yao ◽  
Xiao-Peng Wen

AbstractPhosphoethanolamine N-methyltransferase (PEAMTase) catalyzes the methylation of phosphoethanolamine to produce phosphocholine and plays an important role in the abiotic stress response. Although the PEAMT genes has been isolated from many species other than pitaya, its role in the drought stress response has not yet been fully elucidated. In the present study, we isolated a 1485 bp cDNA fragment of HpPEAMT from pitaya (Hylocereus polyrhizus). Phylogenetic analysis showed that, during its evolution, HpPEAMT has shown a high degree of amino acid sequence similarity with the orthologous genes in Chenopodiaceae species. To further investigate the function of HpPEAMT, we generated transgenic tobacco plants overexpressing HpPEAMT, and the transgenic plants accumulated significantly more glycine betaine (GB) than did the wild type (WT). Drought tolerance trials indicated that, compared with those of the wild-type (WT) plants, the roots of the transgenic plants showed higher drought tolerance ability and exhibited improved drought tolerance. Further analysis revealed that overexpression of HpPEAM in Nicotiana tabacum resulted in upregulation of transcript levels of GB biosynthesis-related genes (NiBADH, NiCMO and NiSDC) in the leaves. Furthermore, compared with the wild-type plants, the transgenic tobacco plants displayed a significantly lower malondialdehyde (MDA) accumulation and higher activities of the superoxide dismutase (SOD) and peroxidase (POD) antioxidant enzymes under drought stress. Taken together, our results suggested that HpPEAMT enhanced the drought tolerance of transgenic tobacco.


2003 ◽  
Vol 69 (10) ◽  
pp. 6114-6120 ◽  
Author(s):  
A. Hülsmann ◽  
T. M. Rosche ◽  
I.-S. Kong ◽  
H. M. Hassan ◽  
D. M. Beam ◽  
...  

ABSTRACT Vibrio vulnificus is an estuarine bacterium capable of causing rapidly fatal infections through both ingestion and wound infection. Like other opportunistic pathogens, V. vulnificus must adapt to potentially stressful environmental changes while living freely in seawater, upon colonization of the oyster gut, and upon infection of such diverse hosts as humans and eels. In order to begin to understand the ability of V. vulnificus to respond to such stresses, we examined the role of the alternate sigma factor RpoS, which is important in stress response and virulence in many pathogens. An rpoS mutant of V. vulnificus strain C7184o was constructed by homologous recombination. The mutant strain exhibited a decreased ability to survive diverse environmental stresses, including exposure to hydrogen peroxide, hyperosmolarity, and acidic conditions. The most striking difference was a high sensitivity of the mutant to hydrogen peroxide. Albuminase, caseinase, and elastase activity were detected in the wild type but not in the mutant strain, and an additional two hydrolytic activities (collagenase and gelatinase) were reduced in the mutant strain compared to the wild type. Additionally, the motility of the rpoS mutant was severely diminished. Overall, these studies suggest that rpoS in V. vulnificus is important for adaptation to environmental changes and may have a role in virulence.


2003 ◽  
Vol 69 (2) ◽  
pp. 1287-1289 ◽  
Author(s):  
Mario Varcamonti ◽  
Maria R. Graziano ◽  
Romilde Pezzopane ◽  
Gino Naclerio ◽  
Slavica Arsenijevic ◽  
...  

ABSTRACT An insertional deoD mutant of Streptococcus thermophilus strain SFi39 had a reduced growth rate at 20°C and an enhanced survival capacity to heat shock compared to the wild type, indicating that the deoD product is involved in temperature shock adaptation. We report evidence that ppGpp is implicated in this dual response.


2012 ◽  
Vol 302 (6) ◽  
pp. E654-E665 ◽  
Author(s):  
Banumathi K. Cole ◽  
Norine S. Kuhn ◽  
Shamina M. Green-Mitchell ◽  
Kendall A. Leone ◽  
Rebekah M. Raab ◽  
...  

Central obesity is associated with chronic inflammation, insulin resistance, β-cell dysfunction, and endoplasmic reticulum (ER) stress. The 12/15-lipoxygenase enzyme (12/15-LO) promotes inflammation and insulin resistance in adipose and peripheral tissues. Given that obesity is associated with ER stress and 12/15-LO is expressed in adipose tissue, we determined whether 12/15-LO could mediate ER stress signals. Addition of 12/15-LO lipid products 12(S)-HETE and 12(S)-HPETE to differentiated 3T3-L1 adipocytes induced expression and activation of ER stress markers, including BiP, XBP-1, p-PERK, and p-IRE1α. The ER stress inducer, tunicamycin, upregulated ER stress markers in adipocytes with concomitant 12/15-LO activation. Addition of a 12/15-LO inhibitor, CDC, to tunicamycin-treated adipocytes attenuated the ER stress response. Furthermore, 12/15-LO-deficient adipocytes exhibited significantly decreased tunicamycin-induced ER stress. 12/15-LO action involves upregulation of interleukin-12 (IL-12) expression. Tunicamycin significantly upregulated IL-12p40 expression in adipocytes, and IL-12 addition increased ER stress gene expression; conversely, LSF, an IL-12 signaling inhibitor, and an IL-12p40-neutralizing antibody attenuated tunicamycin-induced ER stress. Isolated adipocytes and liver from 12/15-LO-deficient mice fed a high-fat diet revealed a decrease in spliced XBP-1 expression compared with wild-type C57BL/6 mice on a high-fat diet. Furthermore, pancreatic islets from 12/15-LO-deficient mice showed reduced high-fat diet-induced ER stress genes compared with wild-type mice. These data suggest that 12/15-LO activity participates in ER stress in adipocytes, pancreatic islets, and liver. Therefore, reduction of 12/15-LO activity or expression could provide a new therapeutic target to reduce ER stress and downstream inflammation linked to obesity.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Erik A Blackwood ◽  
Christopher C Glembotski

Rationale: Atrial natriuretic peptide (ANP) is stored in the heart in large dense core granules of atrial myocytes as a biologically inactive precursor, pro-ANP. Hemodynamic stress and atrial stretch stimulate coordinate secretion and proteolytic cleavage of pro-ANP to its bioactive form, ANP, which promotes renal salt excretion and vasodilation, which, together contribute to decreasing blood pressure. While the ATF6 branch of the ER stress response has been studied in ventricular tissue mouse models of myocardial ischemia and pathological hypertrophy, roles for ATF6 and ER stress on the endocrine function of atrial myocytes have not been studied. Objective/Methods: To address this gap in our knowledge, we knocked down ATF6 in primary cultured neonatal rat atrial myocytes (NRAMs) using a chemical inhibitor of the proteolytic cleavage site enabling ATF6 activation and siRNA and measured ANP expression and secretion basally and in response to alpha- adrenergic agonist stimulation using phenylephrine. We also compared the ANP secretion from wild- type mice and ATF6 knockout mice in an ex vivo Langendorff model of the isolated perfused heart. Results: ATF6 knockdown in NRAMs significantly impaired basal and phenylephrine-stimulated ANP secretion. ATF6 knockout mice displayed lower levels of ANP in atrial tissue at baseline as well as after phenylephrine treatment. Similarly, in the ex vivo isolated perfused heart model, less ANP was detected in effluent of ATF6 knockout hearts compared to wild-type hearts. Conclusions: The ATF6 branch of the ER stress response is necessary for efficient co-secretional processing of pro-ANP to ANP and for agonist-stimulated ANP secretion from atrial myocytes. As ANP is secreted in a regulated manner in response to a stimulus and pro-ANP is synthesized and packaged through the classical secretory pathway, we posit that ATF6 is required for adequate expression, folding, trafficking, processing and secretion of biologically active ANP from the endocrine heart.


2021 ◽  
Vol 22 (19) ◽  
pp. 10772
Author(s):  
Chang Ho Kang ◽  
Eun Seon Lee ◽  
Ganesh M. Nawkar ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
...  

Interaction between light signaling and stress response has been recently reported in plants. Here, we investigated the role of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a key regulator of light signaling, in endoplasmic reticulum (ER) stress response in Arabidopsis. The cop1-4 mutant Arabidopsis plants were highly sensitive to ER stress induced by treatment with tunicarmycin (Tm). Interestingly, the abundance of nuclear-localized COP1 increased under ER stress conditions. Complementation of cop1-4 mutant plants with the wild-type or variant types of COP1 revealed that the nuclear localization and dimerization of COP1 are essential for its function in plant ER stress response. Moreover, the protein amount of ELONGATED HYPOCOTYL 5 (HY5), which inhibits bZIP28 to activate the unfolded protein response (UPR), decreased under ER stress conditions in a COP1-dependent manner. Accordingly, the binding of bZIP28 to the BIP3 promoter was reduced in cop1-4 plants and increased in hy5 plants compared with the wild type. Furthermore, introduction of the hy5 mutant locus into the cop1-4 mutant background rescued its ER stress-sensitive phenotype. Altogether, our results suggest that COP1, a negative regulator of light signaling, positively controls ER stress response by partially degrading HY5 in the nucleus.


2018 ◽  
Author(s):  
Langevin Mary ◽  
Helena Synkova ◽  
Tereza Jancuskova ◽  
Sona Pekova

ABSTRACTIt has been recognized that the Merle coat pattern is not only a visually interesting feature, but it also exerts an important biological role, in terms of hearing and vision impairments. In 2006, the Merle (M) locus was mapped to the SILV gene with a SINE element in it, and the inserted retroelement was proven causative to the Merle phenotype. Mapping of the M locus was a genetic breakthrough and many breeders started implementing SILV SINE testing in their breeding programs. Unfortunately, the situation turned out complicated as genotypes of Merle tested individuals did not always correspond to expected phenotypes, sometimes with undesired health consequences in offspring. Two variants of SILV SINE, allelic to the wild type sequence, have been described so far - Mc and M.Here we report a significantly larger portfolio of existing Merle alleles (Mc, Mc+, Ma, Ma+, M, Mh) in Merle dogs, which are associated with unique coat color features and stratified health impairment risk. The refinement of allelic identification was made possible by systematic, detailed observation of Merle phenotypes in a cohort of 181 dogs from known Merle breeds, by many breeders worldwide, and the use of advanced molecular technology enabling the discrimination of individual Merle alleles with significantly higher precision than previously available.We also show that mosaicism of Merle alleles is an unexpectedly frequent phenomenon, which was identified in 30 out of 181 (16.6%). dogs in our study group. Importantly, not only major alleles, but also minor Merle alleles can be inherited by the offspring. Thus, mosaic findings cannot be neglected and must be reported to the breeder in their whole extent.In light of negative health consequences that may be attributed to certain Merle breeding strategies, we strongly advocate implementation of the refined Merle allele testing for all dogs of Merle breeds to help the breeders in selection of suitable mating partners and production of healthy offspring.


2000 ◽  
Vol 68 (12) ◽  
pp. 6643-6649 ◽  
Author(s):  
L. Papazisi ◽  
K. E. Troy ◽  
T. S. Gorton ◽  
X. Liao ◽  
S. J. Geary

ABSTRACT Comparison of the phenotypic expression of Mycoplasma gallisepticum strain R low (passage 15) to that of strain R high (passage 164) revealed that three proteins, i.e., the cytadhesin molecule GapA, a 116-kDa protein (p116), and a 45-kDa protein (p45), are missing in strain R high. Sequence analysis confirmed that the insertion of an adenine 105 bp downstream of the gapAtranslational start codon resulted in premature termination of translation in R high. A second adenine insertion had also occurred at position 907. Restoration of expression of wild-type gapAin R high (clone designated GT5) allowed us to evaluate the extent to which the diminished cytadherence capacity could be attributed to GapA alone. The results indicated that GT5 attached to the same limited extent as the parental R high, from which it was derived. The cytadherence capability of the parental R high was not restored solely by gapA complementation alone, indicating that either p116 or p45 or both may play a role in the overall cytadherence process. The gene encoding p116 was found to be immediately downstream ofgapA in the same operon and was designatedcrmA. This gene exhibited striking homology to genes encoding molecules with cytadhesin-related functions in bothMycoplasma pneumoniae and Mycoplasma genitalium. Transcriptional analysis revealed thatcrmA is not transcribed in R high. We are currently constructing a shuttle vector containing both the wild-typegapA and crmA for transformation into R high to assess the role of CrmA in the cytadherence process.


2002 ◽  
Vol 184 (2) ◽  
pp. 459-467 ◽  
Author(s):  
Julia Elisabeth Bandow ◽  
Heike Brötz ◽  
Michael Hecker

ABSTRACT Low concentrations of the RNA polymerase inhibitor rifampin added to an exponentially growing culture of Bacillus subtilis led to an instant inhibition of growth. Survival experiments revealed that during the growth arrest the cells became tolerant to the antibiotic and the culture was able to resume growth some time after rifampin treatment. l-[35S]methionine pulse-labeled protein extracts were separated by two-dimensional polyacrylamide gel electrophoresis to investigate the change in the protein synthesis pattern in response to rifampin. The σB-dependent general stress proteins were found to be induced after treatment with the antibiotic. Part of the oxidative stress signature was induced as indicated by the catalase KatA and MrgA. The target protein of rifampin, the β subunit (RpoB) of the DNA-dependent RNA polymerase, and the flagellin protein Hag belonging to the σD regulon were also induced. The rifampin-triggered growth arrest was extended in a sigB mutant in comparison to the wild-type strain, and the higher the concentration, the more pronounced this effect was. Activity of the RsbP energy-signaling phosphatase in the σB signal transduction network was also important for this protection against rifampin, but the RsbU environmental signaling phosphatase was not required. The sigB mutant strain was less capable of growing on rifampin-containing agar plates. When plated from a culture that had already reached stationary phase without previous exposure to the antibiotic during growth, the survival rate of the wild type exceeded that of the sigB mutant by a factor of 100. We conclude that the general stress response of B. subtilis is induced by rifampin depending on RsbP activity and that loss of SigB function causes increased sensitivity to the antibiotic.


Sign in / Sign up

Export Citation Format

Share Document