scholarly journals Treatment of waste stabilization pond effluent using natural zeolite for irrigation potential

2021 ◽  
Author(s):  
Kulyash Meiramkulova ◽  
Timoth Mkilima ◽  
Aliya Темirbekova ◽  
Elmira Bukenova ◽  
Abdilda Meirbekov ◽  
...  

Direct utilization of treated effluent from natural treatment systems for irrigation can be challenging on sensitive plants due to high levels of salinity. Post-treatment of such an effluent prior to its applicability in irrigation can be of significant importance. In this study, the wastewater from a natural treatment plant was treated using a lab-scale filtration system with zeolite as a filter material. Three different column depths (0.5 m, 0.75 m, and 1 m) were used to investigate the effect of column depth on the treatment efficiency of the media. The suitability of the raw wastewater and the treated effluent from each column for irrigation purposes was investigated. The water quality parameters investigated were; electrical conductivity (EC), total dissolved solids (TDS), sodium (Na+), calcium (Ca2+), and magnesium (Mg2+). From the analysis results, it was observed that the column depth had a significant influence on the removal efficiency of the pollutants. Where the removal efficiency was observed to be increasing with the increase in the column depth. The highest removal efficiency (94.58%) was achieved from the combination of electrical conductivity and 1 m column depth, while the lowest removal efficiency (10.05%) was observed from the combination of calcium and 0.5 m column depth. The raw wastewater fell mostly into a “very high” hazard, which is class four (C4) based on electrical conductivity and class four (S4) based sodium adsorption ratio; making it unsuitable for irrigation purposes. However, the status improved after the treatment using different column depths.

1995 ◽  
Vol 31 (12) ◽  
pp. 171-183 ◽  
Author(s):  
M. M. Saqqar ◽  
M. B. Pescod

The performance of the primary anaerobic pond at the Alsamra Wastewater Treatment Plant in Jordan was monitored over 48 months. Overall averages for the removal efficiencies of BOD5, COD and suspended solids were 53%, 53% and 74%, respectively. An improvement in removal efficiency with increase in pond water temperature was demonstrated. A model, which takes into account the variability of raw wastewater at different locations, has been developed to describe the performance of a primary anaerobic pond in terms of a settleability ratio for the raw wastewater. The model has been verified by illustrating the high correlation between actual and predicted pond performance.


2019 ◽  
Vol 23 (10) ◽  
pp. 1783-1786
Author(s):  
MI Ugwoke ◽  
DA Machido ◽  
MB Tijjani

Biofilm producing bacteria are associated with many recalcitrant infections and are highly resistant to antimicrobial agents, hence notoriously difficult to eradicate. This study aimed at determining the biofilm forming capacities of bacterial isolates recovered in the raw wastewater and treated effluent from Wastewater Treatment Plants of Ahmadu Bello University Zaria using Tube Method (TM) and Congo Red Agar (CRA) method; and from the results, among the isolates recovered from the raw wastewater, TM detected 62.5% isolates as positive and 37.5% as negative for biofilm production, CRA detected 37.5% isolates as positive and 62.5% as negative for biofilm production. TM also demonstrated to be more suitable in detecting biofilm producing bacterial isolates from the treated effluent were it detected 50% isolates as positive and 50% as negative. However, CRA detected only 12.5% isolates as positive and 87.5% as negative for biofilm production. We therefore, conclude that the TM is more efficient and reliable for detection of biofilm producing bacteria in the laboratory when compared to CRA method and can be recommended as one of the suitable standard screening method for the detection of biofilm producing bacteria in laboratories.Keywords: Biofilm; Bacteria; Congo red agar and Tube method


2015 ◽  
Vol 26 (4) ◽  
pp. 607-625 ◽  
Author(s):  
Melesse Eshetu Moges ◽  
Fasil Ejigu Eregno ◽  
Arve Heistad

Purpose – The purpose of this paper is to investigate the performance of biochar and fine filtralite as a polishing filter material in further removing organic matter, phosphorous, nitrogen, turbidity and indicator microorganisms from effluents of a compact greywater treatment plant (GWTP). Design/methodology/approach – A filtration experiment was carried out using columns filled with biochar and fine filtralite as filter material and unfilled column as a control. The effluent from the GWTP was pumped using a peristaltic pump at a rate of 280 l/m2-d and was fed in upward flow into the columns. The quality parameters of the raw greywater, effluents from the GWTP and the polishing columns were studied for six months of operation period. Findings – The results indicate that the process of polishing considerably improved the effluent quality of the system. Biochar performed best in removing organic matter, total N, turbidity and odor. Filtralite was superior in removing P. The contribution of the polishing step in removing total coliform bacteria (TCB) and Escherichia coli (E. coli) was remarkable. Additional log reduction of 2.18, 2.26 and 1.81 for TCB and 2.26, 2.70 and 2.01 for E. coli was obtained compared to the GWTP due to biochar, filtralite and control column, respectively. Practical implications – This study demonstrates the opportunities for improving the performance of decentralized greywater treatment systems by integrating locally available polishing materials to achieve a better quality effluent. Originality/value – The present study identifies efficient polishing system for decentralized and compacted greywater treatment system. The recommended polishing materials potentially improve the quality of effluents and add social, economic and environmental values.


Author(s):  
Dhanraj M R ◽  
◽  
Ganesha A ◽  

The aim of this study is to evaluate the quality of sewage generated from 7000 KLD Sewage Treatment Plant (STP) located at Manipal Institute of Technology, Manipal Karnataka which is based on the Activated Sludge Technology. The study of sewage quality of this plant is essential as most of the treated effluent discharged into a stream during monsoon and remaining season used for a Gardening purpose. Water samples were collected from the outlet and analyzed for the major waste-water quality parameters, such as pH, Biochemical Oxygen Demand (BOD) and residual chlorine. The overall quality of sewage of 7000 KLD Sewage treatment plants will be evaluated by collecting samples. The results of these evaluations also determine whether the effluent discharged into the water body is under limits given by Karnataka state pollution control board (KSPCB) & BIS standards.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2004 ◽  
Author(s):  
Al-Mashaqbeh ◽  
Alsafadi ◽  
Dalahmeh ◽  
Bartelt-Hunt ◽  
Snow

The largest wastewater treatment plant in Jordan was monitored in the summer to determine the removal of pharmaceuticals and personal care products (PPCPs). Grab samples were collected from the influent and effluent of As-Samra Wastewater Treatment Plant (WWTP). Liquid chromatography and tandem mass spectrometry (LC–MS/MS) were utilized to determine the concentrations of 18 compounds of pharmaceuticals and personal care products (PPCPs). The results showed that 14 compounds were detected in the collected samples from the influent and effluent of As-Samra WWTP. These compounds are 1,7-dimethylxanthine, amphetamine, acetaminophen, caffeine, carbamazepine, cimetidine, cotinine, diphenhydramine, methylenedioxymethamphetamine (MDMA), morphine, phenazone, sulfamethazine, sulfamethoxazole, thiabendazole, and trimethoprim. However, four compounds were below the detection limit (<0.005 µg/L), namely cimetidine, methylenedioxyamphetamine (MDA), methamphetamine, and sulfachloropyridazine. Among PPCPs, the highest estimated average concentrations in raw wastewater were caffeine, acetaminophen, 1,7-dimethylxanthine, cotinine, and carbamazepine sampled during the summer, at an estimated concentration of 155.6 µg/L, 36.7 µg/L, 10.49 µg/L, and 1.104 µg/L, respectively. However, the highest estimated average concentrations in treated wastewater were for carbamazepine, sulfamethoxazole, caffeine, cotinine, and acetaminophen, at 0.856 µg/L, 0.096 µg/L, 0.086 µg/L, 0.078 µg/L, and 0.041 µg/L, respectively. In general, the results showed that some compounds in the collected samples of wastewater in Jordan have concentrations exceeding the values reported in the literature. The removal efficiency rates of 1,7-dimethylxanthine, acetaminophen, caffeine, cotinine, morphine, and trimethoprim were higher than 95%, while those of carbamazepine, sulfamethazine, and sulfamethoxazole were lower than 22.5%. Moreover, diphenhydramine and thiabendazole had negative removal efficiency rates. The removal efficiency rates of the PPCPs in As-Samra WWTP were generally consistent with those of indicator compounds reported in the literature for conventional WWTPs.


2020 ◽  
Vol 15 (4) ◽  
pp. 947-959
Author(s):  
Alaa-Eldin M. Abd-Elaal ◽  
Amany Aboelkassem ◽  
Ali A. M. Gad ◽  
Saber A. S. Ahmed

Abstract Green remediation is a known technology that uses different types of plants to extract contaminants from the environment. This study aims to remove heavy metals from treated wastewater by using natural growing plants on River Nile banks in Egypt. Secondary treated effluent was collected from West Gerga wastewater treatment plant, located in Sohag city, Egypt. Experiments using two types of aquatic plants were carried out. They were planted individually and in combination with different densities on the secondary treated wastewater surface for 10 days' retention time to remove cadmium (Cd), nickel (Ni) and lead (Pb). It was concluded that both plants have high capabilities to remove heavy metals directly from treated wastewater. The removal efficiency of Cd and Pb was higher when they were planted together than when individually planted. A positive relationship was observed between detention time and heavy metals removal. The removal efficiency of heavy metals increased with the increase of plant density for both plant types. Also, the availability of aquatic plants and their free cost makes their use an economically attractive alternative. In addition, the removal of these plants from River Nile improves the performance of water distribution networks in Egypt.


2013 ◽  
Vol 68 (8) ◽  
pp. 1763-1769 ◽  
Author(s):  
Lili Ma ◽  
Guannan Mao ◽  
Jie Liu ◽  
Hui Yu ◽  
Guanghai Gao ◽  
...  

As microbiological parameters are important in monitoring the correct operation of wastewater treatment plants and controlling the microbiological quality of wastewater, the abundances of total bacteria (including intact and damaged bacterial cells) and total viruses in wastewater were investigated using a combination of ultrasonication and flow cytometry. The comparisons between flow cytometry (FCM) and other cultivation-independent methods (adenosine tri-phosphate (ATP) analysis for bacteria enumeration and epifluorescence microscopy (EFM) for virus enumeration) gave very similar patterns of microbial abundance changes, suggesting that FCM is suitable for targeting and obtaining reliable counts for bacteria and viruses in wastewater samples. The main experimental results obtained were: (1) effective removal of total bacteria in wastewater, with a decrease from an average concentration of 1.74 × 108counts ml−1 in raw wastewater to 3.91 × 106counts ml−1 in the effluent, (2) compared to influent raw wastewater, the average concentration of total viruses in the treated effluent (3.94 × 108counts ml−1) exhibited no obvious changes, (3) the applied FCM approach is a rapid, easy, and convenient tool for understanding the microbial dynamics and monitoring microbiological quality in wastewater treatment processes.


2021 ◽  
Vol 11 (11) ◽  
pp. 5064
Author(s):  
Kirill Ispolnov ◽  
Luis M. I. Aires ◽  
Nídia D. Lourenço ◽  
Judite S. Vieira

Intensive swine farming causes strong local environmental impacts by generating effluents rich in solids, organic matter, nitrogen, phosphorus, and pathogenic bacteria. Insufficient treatment of hog farm effluents has been reported for common technologies, and vermifiltration is considered a promising treatment alternative that, however, requires additional processes to remove nitrate and phosphorus. This work aimed to study the use of vermifiltration with a downstream hydroponic culture to treat hog farm effluents. A treatment system comprising a vermifilter and a downstream deep-water culture hydroponic unit was built. The treated effluent was reused to dilute raw wastewater. Electrical conductivity, pH, and changes in BOD5, ammonia, nitrite, nitrate, phosphorus, and coliform bacteria were assessed. Plants were monitored throughout the experiment. Electrical conductivity increased due to vermifiltration; pH stayed within a neutral to mild alkaline range. Vermifiltration removed 83% of BOD5, 99% of ammonia and nitrite, and increased nitrate by 11%. Hydroponic treatment removed BOD5 (63%), ammonia (100%), nitrite (66%), nitrate (27%), and phosphorus (47% total and 44% dissolved) from vermifiltered water. Coliforms were reduced by vermifiltration but recovered in the hydroponic unit. Plants showed the ability to grow on vermifiltered wastewater, although requiring nutrient supplementation. Vermifiltration combined with hydroponics is a promising treatment for swine wastewater, although optimization will be needed for a sustainable real-scale implementation.


2015 ◽  
Vol 3 (3) ◽  
pp. 5
Author(s):  
Dr. Neha Sharma

Language being a potent vehicle of transmitting cultural values, norms and beliefs remains a central factor in determining the status of any nation. India is a multilingual country which tends to encourage people to use English at national and international level. Basically English in India owes its presence to the British but its subsequent rise is not fully attributable to the British. It has now become the language of wider communication which is now spoken by large number of people all over the world. It is influenced by many factors such as class, society, developments in science and technology etc. However the major influence on English language is and has been the media.


1991 ◽  
Vol 24 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Nik Fuaad Nik Abllah ◽  
Aik Heng Lee

A laboratory study was conducted to determine the feasibility of batch activated sludge reactor for treating pineapple wastewater and to examine the effects of bioaugmentation on treatment performance. The experimental set-up consists of eleven batch reactors. Activated sludge obtained from a wastewater treatment plant treating domestic wastewater was used as seed for the reactors. Synthetic pineapple wastewater was used as feed for the reactors. The eleven reactors were arranged to evaluate the total organic removal, nitrification, and sludge production by bioaugmentation process. Three major factors considered were influent organic loading, ammonia-nitrogen, and dosage of bacterial-culture-product addition. Removal of TOG (total organic carbon), sludge production in terms of SS(suspended solids), and ammonia-nitrogen removal variation are used as evaluation parameters. The TOC removal efficiency after the end of a 48 hour reactor run, for influent TOC of 350.14 to 363.30 mg/l, and 145.92 to 169.66 mg/l, was 94.41 to 95.89%, and 93.72 to 94.73% respectively. Higher organic removal was observed in the bioaugmented reactors with higher organic loading. The better organic removal efficiency in the bioaugmented reactors was probably due to activities of bacteria added. The test results also indicated that sludge yield was enhanced by the bacteria additive and high bacteria dosage produced less sludge. Bioaugmentation was observed to be a suitable alternative for enhancing the biological treatment of pineapple wastewater.


Sign in / Sign up

Export Citation Format

Share Document