Effects of the Axisymmetric Contraction Shape on Incompressible Turbulent Flow

1976 ◽  
Vol 98 (1) ◽  
pp. 58-68 ◽  
Author(s):  
A. K. M. F. Hussain ◽  
V. Ramjee

The performance characteristics of four different axisymmetric contraction shapes with the same contraction ratio are experimentally investigated for incompressible flow. The pre- and postcontraction mean and turbulent velocity profiles and spectra, and the variation of the mean and turbulent velocities along the axis as a function of local contraction ratio and axial length are presented in this paper. The results show that all the nozzles are of essentially equal effectiveness as far as the core flow in the exit plane is concerned. But the mean and turbulence characteristics of the exit boundary layer, the upstream influence of the contraction, and the departure from equipartition within the nozzle vary significantly with the contraction shape. The data demonstrate the inadequacy of the Batchelor-Proudman-Ribner-Tucker theory in predicting the effect of a contraction on the turbulence structure. These data are of interest in wind tunnel and nozzle design, and in boundary layer prediction.

2018 ◽  
Vol 18 (1) ◽  
pp. 3-48
Author(s):  
LMBC Campos ◽  
C Legendre

In this study, the propagation of waves in a two-dimensional parallel-sided nozzle is considered allowing for the combination of: (a) distinct impedances of the upper and lower walls; (b) upper and lower boundary layers with different thicknesses with linear shear velocity profiles matched to a uniform core flow; and (c) a uniform cross-flow as a bias flow out of one and into the other porous acoustic liner. The model involves an “acoustic triple deck” consisting of third-order non-sinusoidal non-plane acoustic-shear waves in the upper and lower boundary layers coupled to convected plane sinusoidal acoustic waves in the uniform core flow. The acoustic modes are determined from a dispersion relation corresponding to the vanishing of an 8 × 8 matrix determinant, and the waveforms are combinations of two acoustic and two sets of three acoustic-shear waves. The eigenvalues are calculated and the waveforms are plotted for a wide range of values of the four parameters of the problem, namely: (i/ii) the core and bias flow Mach numbers; (iii) the impedances at the two walls; and (iv) the thicknesses of the two boundary layers relative to each other and the core flow. It is shown that all three main physical phenomena considered in this model can have a significant effect on the wave field: (c) a bias or cross-flow even with small Mach number [Formula: see text] relative to the mean flow Mach number [Formula: see text] can modify the waveforms; (b) the possibly dissimilar impedances of the lined walls can absorb (or amplify) waves more or less depending on the reactance and inductance; (a) the exchange of the wave energy with the shear flow is also important, since for the same stream velocity, a thin boundary layer has higher vorticity, and lower vorticity corresponds to a thicker boundary layer. The combination of all these three effects (a–c) leads to a large set of different waveforms in the duct that are plotted for a wide range of the parameters (i–iv) of the problem.


Author(s):  
Ersin Sayar

Heat transfer in an oscillating water column in the transition regime of pool boiling to bubbly flow is investigated experimentally and theoretically. Forced oscillations are applied to water via a frequency controlled dc motor and a piston-cylinder device. Heat transfer is from the electrically heated inner surface to the reciprocating flow. The heat transfer in the oscillating fluid column is altered by using stainless steel scrap metal layers (made off open-cell discrete cells) which produces a porous medium within the system. The effective heat transfer mechanism is enhanced and it is due to the hydrodynamic mixing of the boundary layer and the core flow. In oscillating flow, the hydrodynamic lag between the core flow and the boundary layer flow is somehow significant. At low actuation frequencies and at low heat fluxes, heat transfer is restricted in the single phase flows. The transition regime of pool boiling to bubbly flow is proposed to be a remedy to the stated limitation. The contribution by the pool boiling on heat transfer appears to be the dominant mechanism for the selected low oscillation amplitudes and frequencies. Accordingly the regime is a transition from pool boiling to bubbly flow. Nucleate-bubbly flow boiling in oscillating flow is also investigated using a simplified thermodynamic analysis. According to the experimental results, bubbles induce highly efficient heat transfer mechanisms. Experimental study proved that the heater surface temperature is the dominant parameter affecting heat transfer. At greater actuation frequencies saturated nucleate pool boiling ceases to exist. Actuation frequency becomes important in that circumstances. The present investigation has possible applications in moderate sized wicked heat pipes, boilers, compact heat exchangers and steam generators.


2001 ◽  
Vol 446 ◽  
pp. 271-308 ◽  
Author(s):  
M. KALTER ◽  
H. H. FERNHOLZ

This paper is an extension of an experimental investigation by Alving & Fernholz (1996). In the present experiments the effects of free-stream turbulence were investigated on a boundary layer with an adverse pressure gradient and a closed reverse-flow region. By adding free-stream turbulence the mean reverse-flow region was shortened or completely eliminated and this was used to control the size of the separation bubble. The turbulence intensity was varied between 0.2% and 6% using upstream grids while the turbulence length scale was on the order of the boundary layer thickness. Mean and fluctuating velocities as well as spectra were measured by means of hot-wire and laser-Doppler anemometry and wall shear stress by wall pulsed-wire and wall hot-wire probes.Free-stream turbulence had a small effect on the boundary layer in the mild adverse-pressure-gradient region but in the vicinity of separation and along the reverse-flow region mean velocity profiles, skin friction and turbulence structure were strongly affected. Downstream of the mean or instantaneous reverse-flow regions highly disturbed boundary layers developed in a nominally zero pressure gradient and converged to a similar turbulence structure in all three cases at the end of the test section. This state was, however, still very different from that in a canonical boundary layer.


Author(s):  
Kenneth L. Suder

A detailed experimental investigation to understand and quantify the development of blockage in the flow field of a transonic, axial flow compressor rotor (NASA Rotor 37) has been undertaken. Detailed laser anemometer measurements were acquired upstream, within, and downstream of a transonic, axial compressor rotor operating at 100%, 85%, 80%, and 60% of design speed which provided inlet relative Mach numbers at the blade tip of 1.48, 1.26, 1.18, and 0.89 respectively. The impact of the shock on the blockage development, pertaining to both the shock / boundary layer interactions and the shock / tip clearance flow interactions, is discussed. The results indicate that for this rotor the blockage in the endwall region is 2–3 times that of the core flow region, and the blockage in the core flow region more than doubles when the shock strength is sufficient to separate the suction surface boundary layer.


1994 ◽  
Vol 116 (2) ◽  
pp. 238-246 ◽  
Author(s):  
S. Acharya ◽  
S. Dutta ◽  
T. A. Myrum ◽  
R. S. Baker

The ability of the nonlinear k–ε turbulence model to predict the flow in a separated duct flow past a wall-mounted, two-dimensional rib was assessed through comparisons with the standard k–ε model and experimental results. Improved predictions of the streamwise turbulence intensity and the mean streamwise velocities near the high-speed edge of the separated shear layer and in the flow downstream of reattachment were obtained with the nonlinear model. More realistic predictions of the production and dissipation of the turbulent kinetic energy near reattachment were also obtained. Otherwise, the performance of the two models was comparable, with both models performing quite well in the core flow regions and close to reattachment and both models performing poorly in the separated and shear-layer regions close to the rib.


1989 ◽  
Vol 208 ◽  
pp. 459-478 ◽  
Author(s):  
Akira Umemura ◽  
F. H. Busse

A matched-asymptotic analysis has been carried out for an axisymmetric convection cell in the case of stress-free boundaries. This problem differs from that of two-dimensional convection rolls mainly through the special role played by the central plume. The radius, of order ε, of the latter depends on the Rayleigh number R through the relationship $\epsilon^4(-\ln \epsilon) = R^{\frac{2}{3}}$. The plume velocity is independent of height at lowest order and its magnitude exceeds by a factor (− ln ε)½ the strength, of order $R^{\frac{2}{3}}$, of the core flow. As a result of these properties the central plume is governed by advection, in contrast to the perimeter plume which is affected by conduction as well. This asymmetry is reflected in the different thickness of the horizontal thermal boundary layers and gives rise to the deviation of the core temperature from the mean value of the top and bottom temperatures. This deviation is positive (negative) for the case of a falling (rising) central plume. While the core flow is driven mainly by the perimeter plume the fraction of the heat flux carried by the central plume is always above three-quarters and increases as the radius-to-height-ratio λ decreases.


1977 ◽  
Vol 99 (4) ◽  
pp. 666-673 ◽  
Author(s):  
F. G. Blottner

The slender channel equations for laminar flow are solved downstream of the entrance of curved channels of variable height. The singularities at the entrance are removed with coordinate transformations which stretch the boundary layer and shrink the core flow. Initial conditions at the entrance are obtained from the governing equations with only the streamwise velocity specified. A modified box scheme is used to develop a finite-difference method which allows the derivatives of the dependent variables across the channel to be discontinuous at the interface between the boundary layer and core flow. Numerical results are presented for several channel geometries and entry conditions.


1988 ◽  
Vol 188 ◽  
pp. 147-157 ◽  
Author(s):  
J. C. Reis ◽  
C. H. Kruger

The effects of a magnetic field on core turbulence, mean-velocity boundary-layer profiles, turbulence-intensity boundary-layer profiles and turbulent spectral-energy distributions have been experimentally determined for combustion-driven magneto-hydrodynamic (MHD) flows. The turbulence suppression of the core was found to be similar to that of liquid-metal MHD flows, even though the turbulent structure was entirely different. The mean-velocity and turbulence-intensity boundary-layer profiles were affected much less than those of liquid-metal flows, primarily because the low-temperature thermal boundary layer reduced the electrical conductivity near the wall. No spectral dependence of turbulence suppression was observed in the core.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Masaki Matsushima

AbstractThe electrical conductivity of the Earth’s core is an important physical parameter that controls the core dynamics and the thermal evolution of the Earth. In this study, the effect of core electrical conductivity on core surface flow models is investigated. Core surface flow is derived from a geomagnetic field model on the presumption that a viscous boundary layer forms at the core–mantle boundary. Inside the boundary layer, where the viscous force plays an important role in force balance, temporal variations of the magnetic field are caused by magnetic diffusion as well as motional induction. Below the boundary layer, where core flow is assumed to be in tangentially geostrophic balance or tangentially magnetostrophic balance, contributions of magnetic diffusion to temporal variation of the magnetic field are neglected. Under the constraint that the core flow is tangentially geostrophic beneath the boundary layer, the core electrical conductivity in the range from $${10}^{5} ~\mathrm{S}~{\mathrm{m}}^{-1}$$ 10 5 S m - 1 to $${10}^{7}~ \mathrm{S}~{\mathrm{m}}^{-1}$$ 10 7 S m - 1 has less significant effect on the core flow. Under the constraint that the core flow is tangentially magnetostrophic beneath the boundary layer, the influence of electrical conductivity on the core flow models can be clearly recognized; the magnitude of the mean toroidal flow does not increase or decrease, but that of the mean poloidal flow increases with an increase in core electrical conductivity. This difference arises from the Lorentz force, which can be stronger than the Coriolis force, for higher electrical conductivity, since the Lorentz force is proportional to the electrical conductivity. In other words, the Elsasser number, which represents the ratio of the Lorentz force to the Coriolis force, has an influence on the difference. The result implies that the ratio of toroidal to poloidal flow magnitudes has been changing in accordance with secular changes of rotation rate of the Earth and of core electrical conductivity due to a decrease in core temperature throughout the thermal evolution of the Earth.


2001 ◽  
Vol 124 (1) ◽  
pp. 152-159 ◽  
Author(s):  
T. Korakianitis ◽  
P. Papagiannidis ◽  
N. E. Vlachopoulos

The unsteady flow in stator–rotor interactions affects the structural integrity, aerodynamic performance of the stages, and blade-surface heat transfer. Numerous viscous and inviscid computer programs are used for the prediction of unsteady flows in two-dimensional and three-dimensional stator–rotor interactions. The relative effects of the various components of flow unsteadiness on heat transfer are under investigation. In this paper it is shown that for subsonic cases, the reduced frequency parameter for boundary-layer calculations is about two orders of magnitude smaller than the reduced frequency parameter for the core flow. This means that for typical stator–rotor interactions, the unsteady flow terms are needed to resolve the location of disturbances in the core flow, but in many cases the instantaneous disturbances can be input in steady-flow boundary-layer computations to evaluate boundary-layer effects in a quasi-steady approximation. This hypothesis is tested by comparing computations with experimental data on a turbine rotor for which there are extensive experimental heat transfer data available in the open literature. An unsteady compressible inviscid two-dimensional computer program is used to predict the propagation of the upstream stator disturbances into the downstream rotor passages. The viscous wake (velocity defect) and potential flow (pressure fluctuation) perturbations from the upstream stator are modeled at the computational rotor–inlet boundary. The effects of these interactions on the unsteady rotor flow result in computed instantaneous velocity and pressure fields. The period of the rotor unsteadiness is one stator pitch. The instantaneous velocity fields on the rotor surfaces are input in a steady-flow differential boundary-layer program, which is used to compute the instantaneous heat transfer rate on the rotor blades. The results of these quasi-steady heat-transfer computations are compared with the results of unsteady heat transfer experiments and with the results of previous unsteady heat transfer computations. The unsteady flow fields explain the unsteady amplitudes and phases of the increases and decreases in instantaneous heat transfer rate. It is concluded that the present method is accurate for quantitative predictions of unsteady heat transfer in subsonic turbine flows.


Sign in / Sign up

Export Citation Format

Share Document