LPXS: a high-performance, recirculating liquid-metal laser-plasma x-ray source

Author(s):  
Bernhard Adams ◽  
Daniel DeCiccio ◽  
Michael Michon ◽  
Pawel Chmielniak ◽  
Tomáš Parkman ◽  
...  
Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


2009 ◽  
Vol 129 (4) ◽  
pp. 595-600
Author(s):  
Tetsuya Makimura ◽  
Takashige Fujimori ◽  
Shuichi Torii ◽  
Hiroyuki Niino ◽  
Kouichi Murakami

CrystEngComm ◽  
2021 ◽  
Author(s):  
Yuzhu Pan ◽  
Xin Wang ◽  
Jingda Zhao ◽  
Yubing Xu ◽  
Yuwei Li ◽  
...  

Perovskites single crystals (PSCs) could be used to made high performance photoelectric detectors due to its superior optoelectronic characteristics. Generally, external electric field need to be applied in the PSCs-based...


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1512
Author(s):  
Yuhan Liu ◽  
Meiling Zhang ◽  
Jinjun Cheng ◽  
Yue Zhang ◽  
Hui Kong ◽  
...  

Glycyrrhizae Radix et Rhizoma (GRR) is one of the commonly used traditional Chinese medicines in clinical practice, which has been applied to treat digestive system diseases for hundreds of years. GRR is preferred for anti-gastric ulcer, however, the main active compounds are still unknown. In this study, GRR was used as precursor to synthesize carbon dots (CDs) by a environment-friendly one-step pyrolysis process. GRR-CDs were characterized by using transmission electron microscopy, high-resolution TEM, fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. In addition, cellular toxicity of GRR-CDs was studied by using CCK-8 in RAW264.7 cells, and the anti-gastric ulcer activity was evaluated and confirmed using mice model of acute alcoholic gastric ulcer. The experiment confirmed that GRR-CDs were the spherical structure with a large number of active groups on the surface and their particle size ranged from 2 to 10 nm. GRR-CDs had no toxicity to RAW264.7 cells at concentration of 19.5 to 5000 μg/mL and could reduce the oxidative damage of gastric mucosa and tissues caused by alcohol, as demonstrated by restoring expression of malondialdehyde, superoxide dismutase and nitric oxide in serum and tissue of mice. The results indicated the explicit anti-ulcer activity of GRR-CDs, which provided a new insights for the research on effective material basis of GRR.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Author(s):  
Kenichi Nishikawa ◽  
Ioana Duţan ◽  
Christoph Köhn ◽  
Yosuke Mizuno

AbstractThe Particle-In-Cell (PIC) method has been developed by Oscar Buneman, Charles Birdsall, Roger W. Hockney, and John Dawson in the 1950s and, with the advances of computing power, has been further developed for several fields such as astrophysical, magnetospheric as well as solar plasmas and recently also for atmospheric and laser-plasma physics. Currently more than 15 semi-public PIC codes are available which we discuss in this review. Its applications have grown extensively with increasing computing power available on high performance computing facilities around the world. These systems allow the study of various topics of astrophysical plasmas, such as magnetic reconnection, pulsars and black hole magnetosphere, non-relativistic and relativistic shocks, relativistic jets, and laser-plasma physics. We review a plethora of astrophysical phenomena such as relativistic jets, instabilities, magnetic reconnection, pulsars, as well as PIC simulations of laser-plasma physics (until 2021) emphasizing the physics involved in the simulations. Finally, we give an outlook of the future simulations of jets associated to neutron stars, black holes and their merging and discuss the future of PIC simulations in the light of petascale and exascale computing.


Author(s):  
Xiang Li ◽  
Xinyuan Du ◽  
Peng Zhang ◽  
Yunqiu Hua ◽  
Lin Liu ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract This chapter provides an overview of the structural and synthetic chemistry, and the industrial applications, of dioxazine pigments, a small group of high performance organic pigments. The color violet (or purple) has frequently assumed a prominent position in history, on account of its rarity and cost. The natural colorant Tyrian purple and the first synthetic textile dye, Mauveine, are prime examples of this unique historical feature. CI Pigment Violet 23, also referred to as Dioxazine Violet or Carbazole Violet, is one of the most universally used organic pigments, by far the most important industrial pigment in the violet shade area. Dioxazine Violet is also unique as the dominant industrial violet pigment providing a brilliant, intense violet color and an excellent all-round set of fastness properties. The pigment has a polycyclic molecular structure, originally described wrongly as a linear arrangement, and later shown to adopt an S-shaped arrangement on the basis of X-ray structural analysis. Two other dioxazine pigments are of rather lesser importance. The synthesis and manufacturing route to CI Pigment Violet 23 is described in the review. Finally, a survey of the principal current applications of the individual dioxazine pigments is presented.


Sign in / Sign up

Export Citation Format

Share Document