scholarly journals Amino Acid Metabolism is Significantly Altered at the Time of Admission in Hospital for Severe COVID-19 Patients: Findings from Longitudinal Targeted Metabolomics Analysis

Author(s):  
Laura Ansone ◽  
Monta Briviba ◽  
Ivars Silamikelis ◽  
Anna Terentjeva ◽  
Ingus Perkons ◽  
...  

Although the host defense mechanisms against SARS-CoV-2 infection are still poorly described, they are of central importance in shaping the course of the disease and the possible outcome. Metabolomic profiling may complement the lacking knowledge of the molecular mechanisms underlying clinical manifestations and pathogenesis of COVID-19.

2019 ◽  
Vol 20 (13) ◽  
pp. 3314 ◽  
Author(s):  
Janah ◽  
Kjeldsen ◽  
Galsgaard ◽  
Winther-Sørensen ◽  
Stojanovska ◽  
...  

Hundred years after the discovery of glucagon, its biology remains enigmatic. Accurate measurement of glucagon has been essential for uncovering its pathological hypersecretion that underlies various metabolic diseases including not only diabetes and liver diseases but also cancers (glucagonomas). The suggested key role of glucagon in the development of diabetes has been termed the bihormonal hypothesis. However, studying tissue-specific knockout of the glucagon receptor has revealed that the physiological role of glucagon may extend beyond blood-glucose regulation. Decades ago, animal and human studies reported an important role of glucagon in amino acid metabolism through ureagenesis. Using modern technologies such as metabolomic profiling, knowledge about the effects of glucagon on amino acid metabolism has been expanded and the mechanisms involved further delineated. Glucagon receptor antagonists have indirectly put focus on glucagon’s potential role in lipid metabolism, as individuals treated with these antagonists showed dyslipidemia and increased hepatic fat. One emerging field in glucagon biology now seems to include the concept of hepatic glucagon resistance. Here, we discuss the roles of glucagon in glucose homeostasis, amino acid metabolism, and lipid metabolism and present speculations on the molecular pathways causing and associating with postulated hepatic glucagon resistance.


2012 ◽  
Vol 8 (12) ◽  
pp. 3125 ◽  
Author(s):  
Baljit K. Ubhi ◽  
Kian Kai Cheng ◽  
Jiyang Dong ◽  
Tobias Janowitz ◽  
Duncan Jodrell ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Haitao Lu ◽  
Yumei Que ◽  
Xia Wu ◽  
Tianbing Guan ◽  
Hao Guo

Abstract Biofilm formation plays a key role in many bacteria causing infections, which mostly accounts for high-frequency infectious recurrence and antibiotics resistance. In this study, we sought to compare modified metabolism of biofilm and planktonic populations with UTI89, a predominant agent of urinary tract infection, by combining mass spectrometry based untargeted and targeted metabolomics methods, as well as cytological visualization, which enable us to identify the driven metabolites and associated metabolic pathways underlying biofilm formation. Surprisingly, our finding revealed distinct differences in both phenotypic morphology and metabolism between two patterns. Furthermore, we identified and characterized 38 differential metabolites and associated three metabolic pathways involving glycerolipid metabolism, amino acid metabolism and carbohydrate metabolism that were altered mostly during biofilm formation. This discovery in metabolic phenotyping permitted biofilm formation shall provide us a novel insight into the dissociation of biofilm, which enable to develop novel biofilm based treatments against pathogen causing infections, with lower antibiotic resistance.


2015 ◽  
Vol 11 (5) ◽  
pp. 20150154 ◽  
Author(s):  
Xiangfeng Jing ◽  
Thomas A. White ◽  
Xiaowei Yang ◽  
Angela E. Douglas

Malpighian tubules play an essential role in excretion, osmoregulation and immunity of most insects. Exceptionally, aphids lack Malpighian tubules, providing the opportunity to investigate the fate of genes expressed in an organ that has undergone evolutionary reduction and loss. Making use of the sequenced genomes of Drosophila melanogaster and the pea aphid Acyrthosiphon pisum , we demonstrated that more than 50% of Drosophila genes expressed specifically in the Malpighian tubules had orthologues in the pea aphid genome and that most of the pea aphid orthologues with detectable expression were identified in the gut transcriptome. Relative to the whole genome, genes functioning in amino acid metabolism are significantly over-represented among the pea aphid orthologues of Malpighian tubule genes, likely reflecting the central importance of amino acid acquisition and metabolism in aphids. This study demonstrates that the evolutionary loss of a key insect organ, the Malpighian tubules, has not been associated with the coupled loss of molecular functions.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Robert A. Cramer ◽  
Caitlin H. Kowalski

ABSTRACT The molecular mechanisms of microbial virulence and host defense are most often studied using animal models and Koch’s molecular postulates. A common rationale for these types of experiments is to identify therapeutic targets based on the assumption that microbial or host factors that confer extreme animal model survival phenotypes represent critical virulence and host defense factors. Yet null mutant strains of microbial (or host) factors often yield extreme survival curve phenotypes because they fail to establish an infection. The lack of infection and disease establishment prevents true assessment of the given factor’s role(s) in disease progression. Here, we posit that the emphasis on extreme survival curve phenotypes in fungal infectious disease models is leading to missed opportunities to identify new fungal and host factors critical for disease progression. We simply do not yet have a sufficient understanding of fungal virulence and host defense mechanisms throughout the temporal course of an infection. We propose that there is a need to develop new approaches and to revisit tried and true methods to define infection site biology beyond the analysis of survival curve phenotypes. To stimulate these new approaches, we propose the (new) terms “disease initiation factor” and “disease progression factor” to distinguish functional roles at distinct temporal stages of an infection and give us targets to foster new discoveries.


mBio ◽  
2021 ◽  
Author(s):  
Teng Fu ◽  
Joon-Hee Han ◽  
Jong-Hwan Shin ◽  
Hyeunjeong Song ◽  
Jaeho Ko ◽  
...  

The ascomycete phytopathogenic fungus, Colletotrichum scovillei , causes serious yield loss on peppers. However, little is known about molecular mechanisms involved in the development of anthracnose caused by this fungus.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Mingjia Yu ◽  
Lin Zheng ◽  
Xiaobo Wang ◽  
Minfu Wu ◽  
Ming Qi ◽  
...  

Abstract Background Vibrio spp. is the major infection-producing marine bacteria in commercially important bivalve Paphia undulata. The host resistance is the major determining factor for the development of pathogenesis. To explore defense mechanisms, researchers have focused primarily on the study of differential expression of individual or specific groups of host immune genes during pathogen-challenge. Results We compared the expression profile in the surf clams infected with avirulent V. alginolyticus and virulent V. parahaemolyticus to mark the possible molecular mechanisms of pathogenesis. Comparison of the differentially expressed genes between the two groups of Vibrio-infected clams revealed that the number of down-regulate genes in V. parahaemolyticus injected clams (1433) were significantly higher than the other group (169). Based on Gene Ontology classification, a large proportion of these down-regulate genes were found to be associated with cellular and molecular mechanisms for pathogen recognition, and immunity development thereby explaining the low survival rate for the V. parahaemolyticus-treated clams and suggesting a higher virulence of this bacterium towards the surf clams. Quantitative real-time PCR of 24 candidate genes related to immunity involving the JAK-STAT signaling pathway, complementary cascade, cytokine signaling pathway, oxidative stress, phagocytosis and apoptosis down regulated under V. parahaemolyticus infection, indicating compromised host defense. Furthermore, we could demonstrate a central role of JAK-STAT pathway in bacterial clearance. dsRNA mediated depletion of a clam STAT homolog gene results in dramatic increase in the infection by V. alginolyticus, a mildly pathogenic strain under control conditions. Conclusions The difference in gene expression profiles in surf clams treated with two Vibrio species with a differential pathogenicity to P. undulate and downstream molecular analysis could enlighten on the probable molecular mechanisms of the Vibrio pathogenesis and the virulence of V. parahaemolyticus in surf clams, which also benefits to develop new strategies for disease control in surf calm aquaculture.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tian Wu ◽  
Rui Zou ◽  
Dian Pu ◽  
Zengquan Lan ◽  
Bingyu Zhao

Abstract Background Intercropping is often used in the tea producing areas where land resources are not so abundant, and the produced green tea is tasted more delicious through a tea-Chinese chestnut intercropping system according to the experience of indigenous farmers. The length and weight of tea leaf increase under this intercropping system and their root systems are stratified vertically and coordinate symbiosis. However, the delicacy mechanism under the intercropping is not fully understood. Results Green tea from the Chinese chestnut–tea intercropping system established in the 1980s ranked highest compared with a pure tea plantation from the same region. Based on the non-targeted metabolomics, 100 differential metabolites were upregulated in the tea leaves from intercropping system relative to monoculture system. Twenty-one amino acids were upregulated and three downregulated in response to the intercropping based on the targeted metabolomics; half of the upregulated amino acids had positive effects on the tea taste. Levels of allantoic acid, sugars, sugar alcohols, and oleic acid were higher and less bitter flavonoids in the intercropping system than those in monoculture system. The upregulated metabolites could promote the quality of tea and its health-beneficial health effects. Flavone and flavonol biosynthesis and phenylalanine metabolism showed the greatest difference. Numerous pathways associated with amino acid metabolism altered, suggesting that the intercropping of Chinese chestnut–tea could greatly influence amino acid metabolism in tea plants. Conclusions These results enhance our understanding of the metabolic mechanisms by which tea quality is improved in the Chinese chestnut–tea intercropping system and demonstrate that there is great potential to improve tea quality at the metabolomic level by adopting such an intercropping system.


Sign in / Sign up

Export Citation Format

Share Document