A Low-Power Multiplier Using an Efficient Single-Supply Voltage Level Converter

2015 ◽  
Vol 24 (08) ◽  
pp. 1550124 ◽  
Author(s):  
Majid Moghaddam ◽  
Mohammad Hossein Moaiyeri ◽  
Mohammad Eshghi ◽  
Ali Jalali

This paper presents a new high-performance and low-power single-supply voltage level converter (SSLC) and a new carry save array multiplier based on clustered-voltage scaling (CVS) technique for ultra-low-power applications. The multiplier operates with low and high supply voltage (V DDL , V DDH ) and at its end stage, the proposed low-power SSLC is utilized to prevent static power dissipation at the next stage working with V DDH and to enhance the output driving capability. In the proposed SSLC, dynamically-controlled source-body voltage, reduced drain induced barrier lowering (DIBL) effect and diode-connected transistor with body-biasing have been utilized properly in order to reduce the power consumption significantly without considerable speed degradation. The results of the simulations conducted using Cadence with standard 90-nm CMOS technology demonstrate the superiority of the proposed multiplier utilizing the proposed LC in terms of static and total power consumptions as well as power-delay product (PDP) as compared to the multipliers utilizing the previous level converters (LCs) and the single supply multiplier. It is worth mentioning that the static power, total power and PDP of the proposed low-power multiplier are on average 75%, 73% and 16%, respectively lower than the single-supply multiplier.

2018 ◽  
Vol 7 (2.12) ◽  
pp. 205
Author(s):  
T Vasudeva Reddy ◽  
Dr B.K. Madhavi

Low power circuits functioning in sub threshold were proposed in earlier seventies. Recently, growing with the need of low power consumption, the low power circuits have became more attractive. However, the act of sub threshold design logics has become sensitive to the supply voltage & process variations like temperature and so on. In sub threshold region of operations the supply voltage (Vgs) is less than the threshold (Vth).This leads to less power dissipation in over all circuit, but drastically increment in propagation delay. The major intention of the paper is to offer new low power & less delay digital circuits. SRAM is the major power drawing element and dissipation is about 40% in total power. The primary objective is to design of sub threshold SRAM design, Functionality and performance is estimated from the power and delay.The second objective is to offer novel Source coupled logic based SRAM (ST-SC SRA) M & Operating these design under sub threshold operating region. Performance is analyzed through power and delay. Finally comparing the traditional sub threshold SRAM with source coupled based SRAM in power and delay on par with the performance. Discussing some of the applications, where there is a requirement of less power and delay. 


Circuit World ◽  
2020 ◽  
Vol 46 (3) ◽  
pp. 183-192
Author(s):  
Muhammad Yasir Faheem ◽  
Shun'an Zhong ◽  
Xinghua Wang ◽  
Muhammad Basit Azeem

Purpose Successive approximation register (SAR) analogue to digital converter (ADC) is well-known with regard to low-power operations. To make it energy-efficient and time-efficient, scientists are working for the last two decades, and it still needs the attention of the researchers. In actual work, there is no mechanism and circuitry for the production of two simultaneous comparator outputs in SAR ADC. Design/methodology/approach A small-sized, low-power and energy-efficient circuitry of a dual comparator and an amplifier is presented, which is the most important part of SAR ADC. The main idea is to design a multi-dimensional circuit which can deliver two quick parallel comparisons. The circuitry of the three devices is combined and miniaturized by introducing a lower number of MOSFET’s and small-sized capacitors in such a way that there is no need for any matching and calibration. Findings The supply voltage of the proposed comparator is 0.7 V with the overall power consumption of 0.257mW. The input and clock frequencies are 5 and 50 MHz, respectively. There is no requirement for any offset calibration and mismatching concerns due to sharing and centralization of spider-latch circuitry. The total offset voltages are 0.13 0.31 mV with 0.3VDD to VDD. All the components are small-sized and miniaturized to make the circuit cost-effective and energy-efficient. The rise and response time of comparator is around 100 ns. SNDR improved from 56 to 65 dB where the input-referred noise of an amplifier is 98mVrms. Originality/value The proposed design has no linear-complexity compared with the conventional comparator in both modes (working and standby); it is ultimately intended and designed for 11-bit SAR ADC. The circuit based on three rapid clock pulses for three different modes includes amplification and two parallel comparisons controlled and switched by a latch named as “spider-latch”.


2013 ◽  
Vol 22 (10) ◽  
pp. 1340033 ◽  
Author(s):  
HONGLIANG ZHAO ◽  
YIQIANG ZHAO ◽  
YIWEI SONG ◽  
JUN LIAO ◽  
JUNFENG GENG

A low power readout integrated circuit (ROIC) for 512 × 512 cooled infrared focal plane array (IRFPA) is presented. A capacitive trans-impedance amplifier (CTIA) with high gain cascode amplifier and inherent correlated double sampling (CDS) configuration is employed to achieve a high performance readout interface for the IRFPA with a pixel size of 30 × 30 μm2. By optimizing column readout timing and using two operating modes in column amplifiers, the power consumption is significantly reduced. The readout chip is implemented in a standard 0.35 μm 2P4M CMOS technology. The measurement results show the proposed ROIC achieves a readout rate of 10 MHz with 70 mW power consumption under 3.3 V supply voltage from 77 K to 150 K operating temperature. And it occupies a chip area of 18.4 × 17.5 mm2.


VLSI Design ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Shikha Panwar ◽  
Mayuresh Piske ◽  
Aatreya Vivek Madgula

This paper presents several high performance and low power techniques for CMOS circuits. In these design methodologies, drain gating technique and its variations are modified by adding an additional NMOS sleep transistor at the output node which helps in faster discharge and thereby providing higher speed. In order to achieve high performance, the proposed design techniques trade power for performance in the delay critical sections of the circuit. Intensive simulations are performed using Cadence Virtuoso in a 45 nm standard CMOS technology at room temperature with supply voltage of 1.2 V. Comparative analysis of the present circuits with standard CMOS circuits shows smaller propagation delay and lesser power consumption.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950172
Author(s):  
Mehdi Bandali ◽  
Alireza Hassanzadeh ◽  
Masoume Ghashghaie ◽  
Omid Hashemipour

In this paper, an 8-bit ultra-low-power, low-voltage current steering digital-to-analog converter (DAC) is presented. The proposed DAC employs a new segmented structure that results in low integral nonlinearity (INL) and high spurious-free dynamic range (SFDR). Moreover, this DAC utilizes a low-voltage current cell. The low-voltage characteristic of the current cell is achieved by connecting the body of MOSFET switches to their sources. Utilizing a low supply voltage along with a low bias current in the current cells results in about 623.81-[Formula: see text]W power consumption in 140-MS/s sample rate, which is very small compared to previous reports. The post-layout simulation results in 180-nm CMOS technology and [Formula: see text]-V supply voltage with the sample rate of 140[Formula: see text]MS/s show SFDR [Formula: see text] 64.37[Formula: see text]dB in the Nyquist range. The differential nonlinearity (DNL) and INL of the presented DAC are 0.1254 LSB and 0.1491 LSB, respectively.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650066 ◽  
Author(s):  
Pantre Kompitaya ◽  
Khanittha Kaewdang

A current-mode CMOS true RMS-to-DC (RMS: root-mean-square) converter with very low voltage and low power is proposed in this paper. The design techniques are based on the implicit computation and translinear principle by using CMOS transistors that operate in the weak inversion region. The circuit can operate for two-quadrant input current with wide input dynamic range (0.4–500[Formula: see text]nA) with an error of less than 1%. Furthermore, its features are very low supply voltage (0.8[Formula: see text]V), very low power consumption ([Formula: see text]0.2[Formula: see text]nW) and low circuit complexity that is suitable for integrated circuits (ICs). The proposed circuit is designed using standard 0.18[Formula: see text][Formula: see text]m CMOS technology and the HSPICE simulation results show the high performance of the circuit and confirm the validity of the proposed design technique.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8302
Author(s):  
Cancio Monteiro ◽  
Yasuhiro Takahashi

Low-power and secure crypto-devices are in crucial demand for the current emerging technology of the Internet of Things (IoT). In nanometer CMOS technology, the static and dynamic power consumptions are in a very critical challenge. Therefore, the FinFETs is an alternative technology due to its superior attributes of non-leakage power, intra-die variability, low-voltage operation, and lower retention voltage of SRAMs. In this study, our previous work on CMOS two-phase clocking adiabatic physical unclonable function (TPCA-PUF) is evaluated in a FinFET device with a 4-bits PUF circuit complexity. The TPCA-PUF-based shorted-gate (SG) and independent-gate (IG) modes of FinFETs are investigated under various ambient temperatures, process variations, and ±20% of supply voltage variations. To validate the proposed TPCA-PUF circuit, the QUALPFU-based Fin-FETs are compared in terms of cyclical energy dissipation, the security metrics of the uniqueness, the reliability, and the bit-error-rate (BER). The proposed TPCA-PUF is simulated using 45 nm process technology with a supply voltage of 1 V. The uniqueness, reliability, and the BER of the proposed TPCA-PUF are 50.13%, 99.57%, and 0.43%, respectively. In addition, it requires a start-up power of 18.32 nW and consumes energy of 2.3 fJ/bit/cycle at the reference temperature of 27 °C.


2020 ◽  
Vol 9 (1) ◽  
pp. 396-402
Author(s):  
S. A. Z. Murad ◽  
A. Azizan ◽  
A. F. Hasan

This paper describes the design topology of a ultra-low power low noise amplifier (LNA) for wireless sensor network (WSN) application. The proposed design of ultra-low power 2.4 GHz CMOS LNA is implemented using 0.13-μm Silterra technology. The LNA benefits of low power from forward body bias technique for first and second stages. Two stages are implemented in order to enhance the gain while obtaining low power consumption for overall circuit. The simulation results show that the total power consumed is only 0.45 mW at low supply voltage of 0.55 V. The power consumption is decreased about 36% as compared with the previous work. A gain of 15.1 dB, noise figure (NF) of 5.9 dB and input third order intercept point (IIP3) of -2 dBm are achieved. The input return loss (S11) and the output return loss (S22) is -17.6 dB and -12.3 dB, respectively. Meanwhile, the calculated figure of merit (FOM) is 7.19 mW-1.


Author(s):  
Kavyashree P. ◽  
Siva S. Yellampalli

In this chapter, an ultra low power CMOS Common Gate LNA (CGLNA) with a Capacitive Cross-Coupled (CCC) gm boosting scheme is designed and analysed. The technique described has been employed in literature to reduce the Noise Figure (NF) and power dissipation. In this work we have extended the concept for low voltage operation along with improving NF and also for significant reduction in current consumption. A gm boosted CCC-CGLNA is implemented in 90nm CMOS technology. It has a gain of 9.9dB and a noise figure of 0.87dB at 2.4GHz ISM band and consumes less power (0.5mw) from 0.6V supply voltage. The designed gm boosted CCC-CGLNA is suitable for low power application in CMOS technologies.


Author(s):  
Priya Gupta ◽  
Anu Gupta ◽  
Abhijit Asati

In this chapter, the design and comparative analysis is done in between the most well-known column compression multipliers by Wallace and Dadda in sub-threshold regime. In order to reduce the hardware which ultimately reduces area, power and overall power delay product, an energy efficient basic modules of the multipliers like AND gates, half adders, full adders and partial product generate units have been analyzed for sub-threshold operation. At the last stage ripple carry adder is used in both multipliers. The performance metrics considered for the analysis of the multipliers are: power, delay and PDP. Simulation studies are carried out for 8x8-bit and 16x16-bit input data width. The proposed circuits show energy efficient results with Spectre simulations for the TSMC 180nm CMOS technology at 0.4V supply voltage. The proposed multipliers so implemented outperform its counterparts exhibiting low power consumption and lesser propagation delay as compared to conventional multipliers.


Sign in / Sign up

Export Citation Format

Share Document