scholarly journals Honey Mediated Green Synthesis of Nanoparticles: New Era of Safe Nanotechnology

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Eranga Roshan Balasooriya ◽  
Chanika Dilumi Jayasinghe ◽  
Uthpala Apekshani Jayawardena ◽  
Ranasinghe Weerakkodige Dulashani Ruwanthika ◽  
Rohini Mendis de Silva ◽  
...  

With the advent of nanotechnology, many related industries rapidly developed over the recent past. Generally, top-down and bottom-up approaches are the two major processes used to synthesize nanoparticles; most of these require high temperatures, vacuum conditions, and harsh/toxic chemicals. As a consequence, adverse effects impacted organisms including humans. Some synthesis methods are expensive and time-consuming. As a corollary, the concept of “green nanotechnology” emerged with the green synthesis of nanoparticles commencing a new epoch in nanotechnology. This involves the synthesis of nanomaterial from microorganisms, macroorganisms, and other biological materials. Honey is documented as the world’s oldest food source with exceptional medical, chemical, physical, and pharmaceutical values. Honey mediated green synthesis is a relatively novel concept used during the past few years to synthesize gold, silver, carbon, platinum, and palladium nanoparticles. Honey acts as both a stabilizing and a reducing agent and importantly functions as a precursor in nanoparticle synthesis. This method usually requires room temperature and does not produce toxic byproducts. In conclusion, honey mediated green synthesis of nanoparticles provides a simple, cost effective, biocompatible, reproducible, rapid, and safe method. The special activity of honey functionalized nanoparticles may provide valuable end products with numerous applications in diverse fields.

2020 ◽  
Vol 9 (1) ◽  
pp. 268-274
Author(s):  
Anuja S. Kumar ◽  
Gayathri Madhu ◽  
Elza John ◽  
Shinoj Vengalathunadakal Kuttinarayanan ◽  
Saritha K. Nair

AbstractAmong the various green synthesis methods for nanoparticle synthesis, the honey-mediated green synthesis of nanoparticles is a fast, safe, biocompatible, and cost-effective method. In the present work, we demonstrate the sunlight-induced honey-mediated synthesis of silver nanoparticles and report the effect of light intensity, its color, and exposure time on the formation of nanoparticles. The visual inspection followed by UV-Vis spectral studies was performed to confirm the formation of silver nanoparticles. The HRTEM measurement confirms the formation of polydispersed silver particles. We further report the excellent antimicrobial activity of the synthesized nanoparticles against various strains of bacteria, which is found to be comparable to that of the antibiotic drug of choice. Our study points to further research on the possibility of considering these green synthesized silver nanoparticles as an alternative to antibiotics.


Author(s):  
Anikate Sood ◽  
Shweta Agarwal

Nanotechnology is the most sought field in biomedical research. Metallic nanoparticles have wide applications in the medical field and have gained the attention of various researchers for advanced research for their application in pharmaceutical field. A variety of metallic nanoparticles like gold, silver, platinum, palladium, copper and zinc have been developed so far. There are different methods to synthesize metallic nanoparticles like chemical, physical, and green synthesis methods. Chemical and physical approaches suffer from certain drawbacks whereas green synthesis is emerging as a nontoxic and eco-friendly approach in production of metallic nanoparticles. Green synthesis is further divided into different approaches like synthesis via bacteria, fungi, algae, and plants. These approaches have their own advantages and disadvantages. In this article, we have described various metallic nanoparticles, different modes of green synthesis and brief description about different metabolites present in plant that act as reducing agents in green synthesis of metallic nanoparticles. 


Author(s):  
Lavanya Krishnadhas ◽  
Santhi R. ◽  
Annapurani S.

Nanoparticles are gaining interest in biomedical applications due to its importance such as anti-bacterial, anti-fungal and anti-cancer agents. Conventional methods for the synthesis of metal nanoparticles involves toxic reagents which produce harmful by-products and are hazardous to the environment. To overcome these limitations, green synthesis of nanoparticles was established. Eco-friendly methods using plant extracts are gaining popularity due to the abundance of raw materials and the production of non-toxic by-products threatening to the environment. Moreover, the nanoparticles synthesized from the plant extract are cost-effective. In addition, nanoparticles produced by green synthesis methods produces synergetic effect where both the nanoparticles as well as the natural bioactive constituents of the plant influence the biocidal properties. Different methods namely heating in water bath, microwave oven and exposure to bright sunlight were adopted for the synthesis of silver nanoparticles. Plant extract based synthesis of silver nanoparticles was eco-friendly and shows an alternative promise in bio-medical applications and it undertakes the negative effects of synthetic drugs.


2015 ◽  
Vol 4 (4) ◽  
Author(s):  
Tejaswi Thunugunta ◽  
Anand C. Reddy ◽  
Lakshmana Reddy D.C.

AbstractIn the past few years, nanoparticles have been applied in various fields of science and technology, ranging from material science to biotechnology. Thus, the synthesis of nanoparticles can be considered as a dynamic area in research and application of nanoparticles. The different methods of nanoparticle synthesis include physical, chemical, and biological methods. Of these methods, the biological synthesis is to be comparatively widely used due to its advantages of being low cost, nontoxic and environmental friendly. Bio-applications of nanoparticles have pawed way for green synthesis of nanoparticles. In this review, we have provided brief information on various biological agents used for the synthesis of nanoparticles.


2020 ◽  
Vol 36 (6) ◽  
pp. 1154-1160
Author(s):  
G. DEEPA ◽  
M. JEYARAJ ◽  
P. N. Magudeswaran

On account of industrialization and increasing population, the water bodies get polluted by means of degradable and non-degradable substances. In 21st century, it is necessary to maintain a healthy environment especially water bodies for the survival of not the aquatic animals but also for healthy human life. Recent advances suggest that the issues related to water quality could be resolved by using nanoparticles and nano-filtration membrane methods from the development of nanotechnology. In this research, attempt to remove heavy metals from Chithrapuzha River water at Cochin bar mouth (S1) and Fact barge jetty (S2) using Fe2O3 prepared via green synthesis using Egg albumin and Aloe vera. Our results provoke that, the synthesis of Fe2O3 nanoparticle is cost-effective and eco-friendly and also good in nano-regime. Results of filtration studies showed that Fe2O3 nanoparticles remove heavy metals from Chithrapuzha River water and also increases the DO content which helps the survival of aquatic life.


Author(s):  
Totka Dodevska ◽  
Dobrin Hadzhiev ◽  
Ivan Shterev ◽  
Yanna Lazarova

Recently, the development of eco-friendly, cost-effective and reliable methods for synthesis of metal nanoparticles has drawn a considerable attention. The so-called green synthesis, using mild reaction conditions and natural resources as plant extracts and microorganisms, has established as a convenient, sustainable, cheap and environmentally safe approach for synthesis of a wide range of nanomaterials. Over the past decade, biosynthesis is regarded as an important tool for reducing the harmful effects of traditional nanoparticle synthesis methods commonly used in laboratories and industry. This review emphasizes the significance of biosynthesized metal nanoparticles in the field of electrochemical sensing. There is increasing evidence that green synthesis of nanoparticles provides a new direction in designing of cost-effective, highly sensitive and selective electrode-catalysts applicable in food, clinical and environmental analysis. The article is based on 157 references and provided a detailed overview on the main approaches for green synthesis of metal nanoparticles and their applications in designing of electrochemical sensor devices. Important operational characteristics including sensitivity, dynamic range, limit of detection, as well as data on stability and reproducibility of sensors have also been covered. Keywords: biosynthesis; green synthesis; nanomaterials; nanotechnology; modified electrodes


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Muhammad Imran Din ◽  
Aneela Rani

Green protocols for the synthesis of nanoparticles have been attracting a lot of attention because they are eco-friendly, rapid, and cost-effective. Nickel and nickel oxide nanoparticles have been synthesized by green routes and characterized for impact of green chemistry on the properties and biological effects of nanoparticles in the last five years. Green synthesis, properties, and applications of nickel and nickel oxide nanoparticles have been reported in the literature. This review summarizes the synthesis of nickel and nickel oxide nanoparticles using different biological systems. This review also provides comparative overview of influence of chemical synthesis and green synthesis on structural properties of nickel and nickel oxide nanoparticles and their biological behavior. It concludes that green methods for synthesis of nickel and nickel oxide nanoparticles are better than chemical synthetic methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Parth Malik ◽  
Ravi Shankar ◽  
Vibhuti Malik ◽  
Nitin Sharma ◽  
Tapan Kumar Mukherjee

Green chemistry has been an eye catching area of interest since the past few years. With the problem of energy crisis looming high and its constraint being particularly vulnerable on the developing economies, the need for giving alternative traditional chemistry a serious consideration as well as adequate room for development has received significant boost through the coveted efforts of multidisciplinary and interdisciplinary scientific fields. Nanoscience has been the right field in this dimension as it opens up the door to multiple opportunities through enabling a number of chemical, biochemical, and biophysical transformations in a significantly easier and reliable manner. The use of nanoparticles has made the fields of catalysis, synthesis, and enzyme immobilizations as well as molecular interactions a lot much easier, rapid and easily controllable. This review article sheds light on the popular alternative synthesis routes being employed for the synthesis of nanoparticles, the pivotal being from microbes, plants, and chemical routes via sonication, microwaving, and many others.


2014 ◽  
Vol 27 ◽  
pp. 41-52 ◽  
Author(s):  
Samiran Mondal ◽  
Saswati Basu ◽  
Naznin Ara Begum ◽  
Debabrata Mandal

Though there are a numerous methods for chemical synthesis, biogenic synthesis of nanoparticles offers an attractive alternative to chemical synthesis methods. Therefore scientists are continuously engaged in searching hazard free, environment friendly methods of synthesis of nanoparticles with tailor-made structural properties using benign starting materials. Recently several groups have achieved success in the synthesis of Ag, Au, Pd nanoparticles with specific shape and size using extracts obtained from micro-organisms as well as various plant extracts. It will be a highly interesting problem to modify the procedure to develop green-chemical means of synthesizing “tailor-made” monodisperse nanoparticles of single polygonal particle morphology, exclusively. The main objective of this brief article is to give an idea about the most reliable, cost-effective and environment friendly synthetic protocols for metal nanoparticles of different size, shape, composition, and with a high degree of monodispersity.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1498
Author(s):  
Rimsha Chaudhary ◽  
Khadija Nawaz ◽  
Amna Komal Khan ◽  
Christophe Hano ◽  
Bilal Haider Abbasi ◽  
...  

Algae have long been exploited commercially and industrially as food, feed, additives, cosmetics, pharmaceuticals, and fertilizer, but now the trend is shifting towards the algae-mediated green synthesis of nanoparticles (NPs). This trend is increasing day by day, as algae are a rich source of secondary metabolites, easy to cultivate, have fast growth, and are scalable. In recent era, green synthesis of NPs has gained widespread attention as a safe, simple, sustainable, cost-effective, and eco-friendly protocol. The secondary metabolites from algae reduce, cap, and stabilize the metal precursors to form metal, metal oxide, or bimetallic NPs. The NPs synthesis could either be intracellular or extracellular depending on the location of NPs synthesis and reducing agents. Among the diverse range of algae, the most widely investigated algae for the biosynthesis of NPs documented are brown, red, blue-green, micro and macro green algae. Due to the biocompatibility, safety and unique physico-chemical properties of NPs, the algal biosynthesized NPs have also been studied for their biomedical applications, which include anti-bacterial, anti-fungal, anti-cancerous, anti-fouling, bioremediation, and biosensing activities. In this review, the rationale behind the algal-mediated biosynthesis of metallic, metallic oxide, and bimetallic NPs from various algae have been reviewed. Furthermore, an insight into the mechanism of biosynthesis of NPs from algae and their biomedical applications has been reviewed critically.


Sign in / Sign up

Export Citation Format

Share Document