scholarly journals The Aqueous Extract of Eucommia Leaves Promotes Proliferation, Differentiation, and Mineralization of Osteoblast-Like MC3T3-E1 Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mengqi Guan ◽  
Daian Pan ◽  
Mei Zhang ◽  
Xiangyang Leng ◽  
Baojin Yao

Eucommia leaves are dry leaves of Eucommia ulmoides which have long been considered as a functional health food for the treatment of hypertension, hypercholesterolemia, fatty liver, and osteoporosis. With the recent development of Chinese medicine, Eucommia leaves are widely used for tonifying the kidneys and strengthening bone. However, the specific molecular mechanism of Eucommia leaves for strengthening bone remains largely unknown. Osteoblasts are the main functional cells of bone formation; thus, it is essential to study the effect of Eucommia leaves on osteoblasts to better understand their mechanism of action. In the present study, we prepared an aqueous extract of Eucommia leaves (ELAE) and determined its content by high-performance liquid chromatography (HPLC). The effects of ELAE on MC3T3-E1 cells were investigated by CCK-8 assay, alkaline phosphatase (ALP), and Alizarin red S staining assays, combined with RNA sequencing (RNA-seq) and qRT-PCR validation. We demonstrated that ELAE had a significant promoting effect on the proliferation of MC3T3-E1 cells and significantly enhanced extracellular matrix synthesis and mineralization, which were achieved by regulating various functional genes and related signaling pathways. ELAE significantly increased the expression level of genes promoting cell proliferation, such as Rpl10a, Adnp, Pex1, Inpp4a, Frat2, and Pcdhga1, and reduced the expression level of genes inhibiting cell proliferation, such as Npm1, Eif3e, Cbx3, Psmc6, Fgf7, Fxr1, Ddx3x, Mbnl1, and Cdc27. In addition, ELAE increased the expression level of gene markers in osteoblasts, such as Col5a2, Ubap2l, Dkk3, Foxm1, Col16a1, Col12a1, Usp7, Col4a6, Runx2, Sox4, and Bmp4. Taken together, our results suggest that ELAE could promote osteoblast proliferation, differentiation, and mineralization and prevent osteoblast apoptosis. These findings not only increase our understanding of ELAE on the regulation of bone development but also provide a possible strategy to further study the prevention and treatment of osteogenic related diseases by ELAE.

2021 ◽  
Author(s):  
Yu Zhou ◽  
Chaozong Liu ◽  
Zhenwei Zhou ◽  
Xin Li ◽  
Songchuan Su ◽  
...  

Abstract Background: The development of Chinese medicine has been practised in China over a long period of time, and China has long used single medicines in various forms of decoction to treat illnesses, and later learned to combine several medicines to form formulas to enhance the effects of the medicines. The use of Chinese herbal medicines and formulas has played a pivotal role in the prevention and treatment of diseases in China since ancient times. The application of Chinese herbal preparations in the field of osteoporosis treatment has received widespread attention, and Gujin Dan(GJD) is one of the representative herbal formulas, however, the exact minute mechanism of its treatment of osteoporosis remains to be elucidated.Methods: In the study, we prepared an aqueous extract of GJD and measured the effect of different administration concentrations of GJD on cell proliferation by CCK-8 assay, and the effect of GJD on cell differentiation ability by Alizarin Red S Staining, Alkaline Phosphatase Staining and quantitative assay. Changes in gene expression patterns of MC3T3-E1 cells under GJD treatment were investigated by RNA-seq analysis and validation methods.Results: We demonstrate that GJD promotes the proliferation and differentiation of Mc3t3-e1 cells through the regulation of multiple functional genes. This was mainly achieved by regulating the expression levels of four categories of genes that promote the proliferation of Mc3t3-e1 cells or osteoblasts, inhibit apoptosis and autophagy, inhibit osteoclast formation and differentiation, and promote osteoblast differentiation. In addition, GJD slightly increased the expression levels of gene markers in osteoblasts. Conclusions: Our findings suggest that GJD promotes proliferation and differentiation of MC3T3-E1 cells and inhibits osteoclastogenesis and differentiation, as well as apoptosis and autophagy, through the synergistic interaction of various herbs and their active components in GJD. This study has significantly improved the current understanding of the molecular effects of GJD on MC3T3-E1 cells. This study also provides new ideas for possible strategies to further prevent and treat bone metabolism-related diseases using traditional Chinese medicinal preparations.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhenwei Zhou ◽  
Daqing Zhao ◽  
Pengcheng Zhang ◽  
Mei Zhang ◽  
Xiangyang Leng ◽  
...  

Abstract Background Deer Sinew serves as a medicinal food, and has been used for treating skeletal diseases, especially bone diseases in a long history. Thus, it could become an alternative option for the prevention and therapeutic remedy of bone-related diseases. In our previous study, we established an optimal extraction process of the enzymatic hydrolysates from Chinese Sika deer sinews (DSEH), and we demonstrated that DSEH significantly promoted the proliferation of MC3T3-E1 cells (an osteoblast-like cell line) with a certain dose-effect relationship. However, the precise molecular mechanism of deer sinew in regulating bone strength is still largely unknown. The aim of this study was to explore the underlying molecular mechanism of DSEH on MC3T3-E1 cells proliferation and extracellular matrix synthesis. Methods Preparation and quality control were performed as previously described. The effect of DSEH at different administrated concentrations on cell proliferation was measured using both CCK-8 and MTT assays, and the capacity of DSEH on extracellular matrix synthesis was detected by Alizarin red staining and quantification. The gene expression pattern change of MC3T3-E1 cells under the treatment of DSEH was investigated by RNA-seq analysis accompanied with validation methods. Results We demonstrated that DSEH promoted MC3T3-E1 cell proliferation and extracellular matrix synthesis by regulating multiple functional genes. DSEH significantly increased the expression levels of genes that promoted cell proliferation such as Gstp1, Timp1, Serpine1, Cyr61, Crlf1, Thbs1, Ctgf, P4ha2, Sod3 and Nqo1. However, DSEH significantly decreased the expression levels of genes that inhibited cell proliferation such as Mt1, Cdc20, Gas1, Nrp2, Cmtm3, Dlk2, Sema3a, Rbm25 and Hspb6. Furthermore, DSEH mildly increased the expression levels of osteoblast gene markers. Conclusions Our findings suggest that DSEH facilitate MC3T3-E1 cell proliferation and extracellular matrix synthesis to consolidate bone formation and stability, but prevent MC3T3-E1 cells from oxidative stress-induced damage, apoptosis and further differentiation. These findings deepened the current understanding of DSEH on regulating bone development, and provided theoretical support for the discovery of optional prevention and treatment for bone-related diseases.


Author(s):  
Honghong Cao ◽  
Weihua Yan ◽  
Shuang Guo ◽  
Chang Deng ◽  
Rong Xue ◽  
...  

Abstract Fructus Gardeniae, known as Zhi-zi in China, has been used as Chinese herbal medicine and functional health food for thousands of years. Fructus Gardeniae Grandiflorae, named as Shui-zhizi, is a counterfeit herb of Fructus Gardeniae. In order to discriminate these two varieties, based on ultra-high-performance liquid chromatography, an analysis method of fingerprints of Fructus Gardeniae and Fructus Gardeniae Grandiflorae was established. With hierarchical clustering analysis and principal component analysis, they were separated into two groups. Analyzed with partial least squares discriminant analysis, there were differences in chemical compositions between Fructus Gardeniae and Fructus Gardeniae Grandiflorae. Six compounds, crocin I, genipin-1-β-D-gentiobioside and four other unknown compositions were identified as differential marker compositions between them. Furthermore, seven active substances in them were determined simultaneously. Thus, an integral method of ultra-high-performance liquid chromatography fingerprint combined with chemometrics analysis and quantitative assessment was established. It could be utilized in characterization, quality evaluation of Fructus Gardeniae and could be applied for discriminating Fructus Gardeniae from Fructus Gardeniae Grandiflorae.


2019 ◽  
Vol 14 (2) ◽  
pp. 170-176 ◽  
Author(s):  
Jun-He Zhang ◽  
Hai-Bin Xia

Background:Esophageal Carcinoma (EC) is the eighth most common cancer worldwide. Numerous studies have highlighted a vital role of microRNAs (miRNAs) in the development of EC. However, the mechanism of microRNA (miRNA)-141 in Esophageal Squamous Cell Carcinoma (ESCC) remains unknown.Objective:In this study, we explored the effects of miRNA-141 on EC cell proliferation, apoptosis, xenograft tumour growth and their possible mechanisms.Methods :A lentivirus-vector-expressing miRNA-141 was constructed, and a TE-1 cell line of ESCC with a stable expression of miRNA-141 was transfected and screened. The miRNA-141 expression level was detected using qRT-PCR. Effects of miRNA-141 overexpression on cell proliferation and apoptosis were detected using MTT and flow cytometry, respectively. Using a dual-luciferase reporter assay, a direct interaction between miRNA-141 and the 3'-Untranslated Region (UTR) of YAP1 and SOX17 was confirmed. Tumour xenograft experiment in nude mice was used to detect the tumour growth, and the effects of miRNA-141 overexpression on YAP1 and SOX17 were analysed using Western blot.Results:We found that miRNA-141 was highly expressed in TE-1 cells, and miRNA-141 overexpression promoted cell proliferation and inhibited apoptosis. Moreover, the miRNA-141 group showed significantly increased tumour growth ability, luciferase activities and expression levels of YAP1 and SOX17 in the miRNA-141group were significantly down-regulated.Conclusion:miRNA-141 promotes cell proliferation and inhibits apoptosis in ESCC by downregulating the expression level of YAP1 and SOX17, indicating that miRNA-141 may be a potential molecular target for the treatment of ESCC.


2020 ◽  
Vol 15 (1) ◽  
pp. 522-531
Author(s):  
Jin-Liang Li ◽  
Zai-Qiu Wang ◽  
Xiao-Li Sun

AbstractObjectiveThis study was designed to explore the biological significance of myosin light chain 6B (MYL6B) in rectal adenocarcinoma.MethodsProfiles on the Oncomine dataset, GEPIA website, and UALCAN-TCGA database were searched to assess the MYL6B expression level in rectal adenocarcinoma tissues and normal tissues. After MYL6B knockdown using siRNA strategy, cell counting kit-8 (CCK-8) and transwell assays were conducted to measure cell proliferation, migration and invasion, respectively. Flow cytometry analysis was conducted to assess cell apoptosis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot were performed to detect the expression level of mRNAs and proteins.ResultsThe data showed that overexpression of MYL6B was observed in rectal adenocarcinoma tissues and correlated with a poor prognosis of patients. Functional in vitro experiments revealed that MYL6B knockdown could inhibit proliferation, migration, and invasion of rectal adenocarcinoma cells, while promote cell apoptosis. Moreover, western blot analysis suggested that increased expression of E-cadherin and decreased expression of N-cadherin and Vimentin were induced by si-MYL6B.ConclusionIn summary, this study elaborated on the promoting effect of MYL6B in rectal adenocarcinoma progression, thus providing novel insight for strategies of clinical diagnosis and drug application in the future clinical study.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Hongying Zhao ◽  
Yu Wang ◽  
Xiubao Ren

Abstract Objective: Nicotine, the main ingredient in tobacco, is identified to facilitate tumorigenesis and accelerate metastasis in tumor. Studies in recent years have reported that long intergenic non-protein coding RNA 460 (LINC00460) is strongly associated with lung cancer poor prognosis and nicotine dependence. Nonetheless, it is unclear whether nicotine promotes the development of lung cancer through activation of LINC00460. Methods: We determined that LINC00460 expression in lung cancer tissues and the prognosis in patients with non-small cell lung carcinoma (NSCLC) using Gene Expression Profiling Interactive Analysis (GEPIA) website and The Cancer Genome Atlas (TCGA) database. Through in vitro experiments, we studied the effects of nicotine on LINC00460 in NSCLC cells lines using Cell Counting Kit-8 (CCK-8), transwell test, flow cytometry, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot assays. Results: We identified the significant up-regulated expression level of LINC00460 in NSCLC tissues and cell lines, especially, the negative correlation of LINC00460 expression level with overall survival (OS). In in vitro experiments, LINC00460 was overexpressed in NSCLC cell lines under nicotine stimulation. Nicotine could relieve the effect of LINC00460 knockdown on NSCLC cell proliferation, migration and apoptosis. The same influence was observed on PI3K/Akt signaling pathway. Conclusions: In summary, this is the first time to examine the potential roles of LINC00460 in lung cancer cell proliferation, migration and apoptosis induced by nicotine. This may help to develop novel therapeutic strategies for the prevention and treatment of metastatic tumors from cigarette smoke-caused lung cancer by blocking the nicotine-activated LINC00460 pathway.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Zhiyuan Lu ◽  
Dawei Wang ◽  
Xuming Wang ◽  
Jilong Zou ◽  
Jiabing Sun ◽  
...  

Abstract Background More and more studies have confirmed that miRNAs play an important role in maintaining bone remodeling and bone metabolism. This study investigated the expression level of miR-206 in the serum of osteoporosis (OP) patients and explored the effect and mechanism of miR-206 on the occurrence and development of osteoporosis. Methods 120 postmenopausal women were recruited, including 63 cases with OP and 57 women without OP. The levels of miR-206 were determined by qRT-PCR technology. Spearman correlation coefficient was used to evaluate the correlation of miR-206 with bone mineral density (BMD). An ROC curve was used to evaluate the diagnostic value of miR-206 in osteoporosis. The effects of miR-206 on cell proliferation and cell apoptosis of hFOBs were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter gene assay was used to confirm the interaction of miR-206 and the 3′UTR of HDAC4. Results Serum miR-206 had low expression level in osteoporosis patient group compared with control group. The expression level of serum miR-206 had diagnostic value for osteoporosis, and the serum miR-206 levels were positively correlated with BMD. The down-regulated miR-206 could inhibit cell proliferation and promote cell apoptosis. Luciferase analysis indicated that HDAC4 was the target gene of miR-206. Conclusions MiR-206 could be used as a new potential diagnostic biomarker for osteoporosis, and in in vitro cell experiments, miR-206 may regulate osteoblast cell proliferation and apoptosis by targeting HDAC4.


2020 ◽  
Vol 52 (9) ◽  
pp. 967-974
Author(s):  
Hui Zhang ◽  
Ningning Ji ◽  
Xinyan Gong ◽  
Shimao Ni ◽  
Yu Wang

Abstract Studies have shown that long non-coding RNAs (lncRNA) play critical roles in coronary atherosclerotic heart disease (CAD). However, the function of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in CAD is unclear. In this study, we aimed to investigate the functions of lncRNA NEAT1 in CAD. RT-PCR and western blot analysis were carried out to examine the expressions of related RNAs. Colony formation assay, cell proliferation assay, apoptosis assay, and dual-luciferase reporter assay were conducted to investigate the abilities of colony migration, cell proliferation, apoptosis, and targeting. The results showed that NEAT1 was up-regulated in CAD blood samples and in human coronary endothelial cells (HCAECs). Transfection of pcNEAT1 significantly inhibited the survival rate of HCAECs and induced apoptosis of HCAECs. MiR-140-3p was down-regulated in HCAECs. NEAT1 directly targeted miR-140-3p, and the expression of miR-140-3p was inversely correlated with the expression of NEAT1 in CAD patients. In addition, co-transfection of NEAT1 with miR-140-3p mimic reversed the effect of pcNEAT1 on cell viability and apoptosis. mitogen-activated protein kinase 1 (MAPK1) was proved to be a target gene of miR-140-3p, and the miR-140-3p mimic was shown to reduce the expression of MAPK1 in HCAECs. pcNEAT1 significantly increased the expression level of MAPK1, while shNEAT1 significantly reduced the expression level of MAPK1. Our results revealed that lncRNA NEAT1 increased cell viability and inhibited CAD cell apoptosis possibly by activating the miR-140-3p/MAPK1 pathway, and lncRNA NEAT1 might serve as a potential therapeutic target for CAD.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jing-jie Li ◽  
Zheng Li ◽  
Li-juan Gu ◽  
Yun-bo Wang ◽  
Mi-ra Lee ◽  
...  

Deer antlers are the only mammalian appendage capable of regeneration. We aimed to investigate the effect of red deer antler extract in regulating hair growth, using a mouse model. The backs of male mice were shaved at eight weeks of age. Crude aqueous extracts of deer antler were prepared at either 4°C or 100°C and injected subcutaneously to two separate groups of mice (n=9) at 1 mL/day for 10 consecutive days, with water as a vehicle control group. The mice skin quantitative hair growth parameters were measured and 5-bromo-2-deoxyuridine was used to identify label-retaining cells. We found that, in both the 4°C and the 100°C deer antler aqueous extract-injection groups, the anagen phase was extended, while the number of BrdU-incorporated cells was dramatically increased. These results indicate that deer antler aqueous extract promotes hair growth by extending the anagen phase and regulating cell proliferation in the hair follicle region.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shugang Li ◽  
Shanshan Ran ◽  
Qingxin Ren

Abstract Objectives Malignant cell proliferation is one of the important mechanisms of arsenic poisoning. A large number of studies have shown that STAT3 plays an important role in cell malignant proliferation, but there are still many contradictions in the effect of arsenic on JAK2/STAT3. This study aims to explore the role of JAK2/STAT3 in arsenic-induced cell proliferation. Methods By taking normal cells as the research object and using Standard Mean Difference (SMD) as the effect size, meta-analysis was used to explore the effect of arsenic on JAK2/STAT3. Then, the dose-effect Meta was used to further clarify the dose-effect relationship of arsenic on JAK2/STAT3. Results Through meta-analysis, this study found that arsenic could promote the phosphorylation of STAT3 (SMD=4.21, 95%CI [1.05, 7.37]), and increase IL-6 and p-JAK2, Vimentin, VEGF expression levels, thereby inducing malignant cell proliferation. In addition, this study also found that arsenic exposure dose (<5 μmol m−3), time(<24 h) and cell type were important sources of heterogeneity in the process of exploring the effects of arsenic on p-STAT3, IL-6 and p-JAK2. Dose-effect relationship meta-analysis results showed that arsenic exposure significantly increased the expression level of IL-6. When the arsenic exposure concentration was less than 7 μmol m−3, the expression level of p-JAK2 upregulated significantly as the arsenic exposure concentration gradually increasing. Moreover, the expression level of p-STAT3 elevated significantly with the gradual increase of the arsenic concentration under 5 μmol m−3 of arsenic exposure, but the expression level of p-STAT3 gradually decreases when the concentration is greater than 5 μmol m−3. Conclusions Exposure to low dose of arsenic could promote the expression of JAK2/STAT3 and induce the malignant proliferation of cells through upregulating IL-6, and there was dose-effect relationship among them.


Sign in / Sign up

Export Citation Format

Share Document