scholarly journals Sodium Butyrate Upregulates miR-203 Expression to Exert Anti-Proliferation Effect on Colorectal Cancer Cells

2016 ◽  
Vol 39 (5) ◽  
pp. 1919-1929 ◽  
Author(s):  
Ruirui Han ◽  
Qianqian Sun ◽  
Jianbo Wu ◽  
Pengyuan Zheng ◽  
Guoqiang Zhao

Background: As the end product of the bacterial fermentation of dietary fiber in the colonic lumen, sodium butyrate (NaBt) has been reported to exert antitumor effects on colorectal cancer (CRC). In addition to functioning as a histone deacetylase (HDAC) inhibitor, NaBt also regulates the expression of microRNAs (miRNAs) to inhibit CRC cell proliferation. Yet, the mechanisms involved are not completely understood. Here we investigate whether NaBt regulates miR-203 to inhibit CRC growth and explore the promising target gene of miR-203 in CRC cells. Methods: We conducted qRT-PCR and Western blotting assays to evaluate the effects of NaBt on the expression of miR-203 and NEDD9 in HT-29 and Caco-2 cell lines. The promising target gene of miR-203 was predicted by miRNA target prediction and dual luciferase reporter assay. CRC Cell proliferation, colony formation, cell apoptosis and cell invasion assays were performed to explore the effect of NaBt, miR-203 and NEDD9 on HT-29 and Caco-2 cell lines. Results: The results showed that NaBt increased the expression of miR-203 to induce CRC cell apoptosis as well as inhibit cell proliferation, colony formation and cell invasion. Moreover, we determined that the NEDD9 was a target gene of miR-203. NEDD9 partially overcame the inhibitory effects of miR-203 on CRC cell colony formation and invasion. Conclusions: NaBt could induce CRC cell apoptosis, inhibit CRC cell proliferation, colony formation and invasion through miR-203/NEDD9 cascade. The present study may enrich the mechanisms underlying the process that NaBt exerts anti-tumor effects on CRC cells.

2019 ◽  
Vol 18 ◽  
pp. 153303381984663 ◽  
Author(s):  
Xin Hu ◽  
Hefei Feng ◽  
Huaxing Huang ◽  
Wei Gu ◽  
Qiuyu Fang ◽  
...  

Objective: In this study, we aimed to clarify the effects of long noncoding ribonucleic acid prostrate androgen-regulated transcript-1 on bladder cancer cell proliferation and apoptosis. Methods: Microarrays were implemented to investigate the long noncoding ribonucleic acid expression profiles in bladder cancer tissue (N = 9) and in noncancer bladder tissue (N = 5). Relative prostrate androgen-regulated transcript-1 expression levels in tissue samples or cell lines were detected by real-time quantitative reverse transcription-polymerase chain reaction. Prostrate androgen-regulated transcript-1 expression was enhanced by the transfection of pcDNA3.1-prostrate androgen-regulated transcript-1 and downregulated by the infection with pcMV-sh prostrate androgen-regulated transcript-1. Additionally, cell proliferation and apoptosis were measured by the cell counting kit-8 assay and flow cytometry, respectively. Cell invasion was determined by a Transwell assay. Results: Prostrate androgen-regulated transcript-1 expression was upregulated in bladder cancer tissues compared to adjacent nontumor tissues. Furthermore, prostrate androgen-regulated transcript-1 levels were successfully upregulated by pcDNA3.1-prostrate androgen-regulated transcript-1 and depleted by pCMV-sh prostrate androgen-regulated transcript-1 in bladder cancer cell lines (5637, T24). Enhanced prostrate androgen-regulated transcript-1 expression promoted cell proliferation and invasion and inhibited cell apoptosis. However, knockdown of prostrate androgen-regulated transcript-1 expression inhibited cell proliferation and invasion and induced cell apoptosis. Conclusion: In summary, these data suggest that the knockdown of prostrate androgen-regulated transcript-1 represents a tumor suppressor player in bladder cancer and contributes to the inhibition of tumor proliferation, the promotion of cell apoptosis, and the suppression of cell invasion. Prostrate androgen-regulated transcript-1 may function as a new prognostic biomarker and as a feasible therapeutic target for patients with bladder cancer.


2021 ◽  
Vol 21 ◽  
Author(s):  
Tongqing Xue ◽  
Gang Yin ◽  
Weixuan Yang ◽  
Xiaoyu Chen ◽  
Cheng liu ◽  
...  

Background: Dysregulation of microRNAs (miRNAs) figures prominently in radio-sensitivity of non-small cell lung cancer (NSCLC). MiR-129-5p can block the development of a variety of tumors. However, whether miR-129-5p modulates radio-sensitivity of NSCLC cells remains unknown. Objective: This study was aimed to explore the role and the underlying mechanism of miR-129-5p in the radiosensitivity of NSCLC. Methods: Radio-resistant NSCLC cell lines (A549-R and H1299-R) were constructed using A549 and H1299 cells. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to quantify miR-129-5p, SRY-box transcription factor 4 (SOX4) mRNA, and RUNX family transcription factor 1 (RUNX1) mRNA expression levels. Cell apoptosis and cell cycle were detected by flow cytometry. Cell counting kit-8 (CCK-8) assay and colony formation experiments were used to measure cell proliferation. γ-H2AX was examined by Western blot to confirm DNA injury. Dual-luciferase reporter experiments were applied to analyze the interactions among miR-129-5p, RUNX1, and SOX4. Results: In A549-R and H1299-R cells, compared with the wild type cell lines, miR-129-5p expression was remarkably reduced while SOX4 and RUNX1 expressions were increased. The transfection of miR-129-5p into NSCLC cell lines, markedly induced cell apoptosis, DNA injury, and cell cycle arrest, and inhibited cell proliferation and colony formation. RUNX1 and SOX4 were validated as target genes of miR-129-5p, and the restoration of RUNX1 or SOX4 could counteract the influence of miR-129-5p on A549-R cells. Conclusion: MiR-129-5p sensitizes A549-R and H1299-R cells to radiation by targeting RUNX1 and SOX4.


2018 ◽  
Vol 50 (6) ◽  
pp. 2249-2259 ◽  
Author(s):  
Xuesong Wang ◽  
Lei Peng ◽  
Xiaojin Gong ◽  
Xiugong Zhang ◽  
Ruifu Sun ◽  
...  

Background/Aims: Increasing evidences suggest that dysregulated expression of miRNAs contributes to the progression of various tumors. However, the underlying function of miR-423-5p in osteosarcoma remains unexplored. Methods: The expression of miR-423-5p and STMN1 were determined in osteosarcoma samples and cell lines via quantitative real-time PCR. Colony formation and Cell Counting Kit-8 (CCK-8) assays were performed to measure cell proliferation ability and transwell analysis was used to detect cell invasion, and dual luciferase reporter assay was perform to analysis the interaction between the miR-423-5p and STMN1. Results: The expression levels of miR-423-5p and STMN1 in the osteosarcoma tissues and cell lines were measured by qRT-PCR. Cell viability was determined using the clone formation and CCK-8 assays. A dual-luciferase reporter and Western blot were performed to stdudy the target gene of miR-423-5p. Here, we showed that miR-423-5p expression was downregulated in osteosarcoma tissues and cell lines. However, the expression of stathmin1 (STMN1) was downregulated in osteosarcoma tissues and cell lines. Moreover, STMN1 expression level was negatively correlated with the miR-423-5p expression in the osteosarcoma tissues. We identified STMN1 was a direct target gene of miR-423-5p in osteosarcoma cell. Overexpression of miR-423-5p inhibited osteosarcoma cell proliferation, colony formation and invasion. Furthermore, we demonstrated that STMN1 was involved in miR-423-5p-mediated cell behavior such as cell proliferation, colony formation and invasion in the osteosarcoma cell. Conclusion: Our present study indicated that miR-423-5p acted as a tumor suppressor gene in osteosarcoma partly through inhibiting STMN1 expression.


2022 ◽  
Vol 12 (2) ◽  
pp. 335-345
Author(s):  
Xiaoyan Zhang ◽  
Wei Zhu ◽  
Junjie Lu

MicroRNAs (miRNAs/miRs) have been identified to serve a key role in the development of tumors. However, the role of miR-133b in colorectal cancer (CRC) remains largely unclear. This study will investigate the role and mechanism of miR-133b in CRC. Reverse transcription-quantitative polymerase chain reaction analysis was performed to detect the level of miR-133b in CRC cell lines. Bioinformatics software TargetScan predicted the potential target genes of miR-133b, and a dual luciferase reporter assay was used to confirm this. To investigate the role of miR-133b in CRC cells, miR-133b was upregulated or downregulated in CRC cell lines (SW620 and HT-29) by transfecting with a miR-133b mimic or inhibitor, respectively. Subsequently, cell viability was analyzed using MTT assay, whereas cell apoptosis and the cell cycle distribution were analyzed by flow cytometry. In addition, the associated protein levels were detected using western blot analysis. The results demonstrated that miR-133b was significantly downregulated in CRC cell lines when compared with the normal colonic epithelial NCM-460 cell line. Human antigen R (HuR; also termed ELAVL1) was demonstrated to be a direct target of miR-133b and was negatively regulated by miR-133b. HuR was also notably upregulated in the CRC cell lines when compared with the normal control. Transfection of SW620 and HT-29 cells with the miR-133b mimic significantly inhibited cell viability, and induced cell apoptosis and G1 phase arrest, while upregulation of HuR demonstrated the opposite effects. Furthermore, the present data demonstrated that the miR-133b mimic significantly enhanced the protein levels of p21 and p27, and downregulated cyclin D1 and cyclin A levels in SW620 and HT-29 cells; the opposite effects were observed following treatment with the miR-133b inhibitor. In conclusion, the data indicate that miR-133b suppressed CRC cell growth by targeting HuR.


2018 ◽  
Author(s):  
Abdulaziz Asiri ◽  
Michael S Toss ◽  
Teresa Pereira Raposo ◽  
Maham Akhlaq ◽  
Hannah Thorpe ◽  
...  

AbstractCten is an oncogene which promotes epithelial-mesenchymal transition (EMT) in many signalling pathways. Having previously shown that Cten promotes EMT through Snail, we investigated whether Cten function could be mediated through Src (a known regulator of Snail).Cten levels were modulated by forced expression in colorectal cancer (CRC) cell lines with low Cten expression (HCT116 and RKO) and gene knockdown in a cell line with high Cten expression (SW620). In all cell lines, Cten was a positive regulator of Src expression. The functional importance of Src was tested by forcibly expressing Cten and simultaneously knocking down Src. This resulted in abrogation of Cten motility-inducing activity (cell migration, cell invasion, wound healing – each p<0.001) and abrogation of the promotion of colony formation by Cten (p<0.001) together with failure to induce the Cten targets - Snail and ROCK1. To complement these experiments, Cten expression was restored by forced expression in a subclone of SW620 in which the Cten gene had been deleted (SW620ΔCten). SW620ΔCten showed reduced expression of Src which increased following restoration of Cten by forced expression. In SW620ΔCten, restoration of Cten increased cell motility (cell migration, cell invasion, wound healing) and colony formation (each p<0.001) which were all lost if Src was concomitantly knocked down. Quantitative Reverse-Transcription PCR (qRT-PCR) showed that modulation of Cten had no effect on Src mRNA levels. However, a cycloheximide (CHX) pulse chase assay demonstrated stabilisation of Src protein by Cten. Finally, the expression of Cten and Src was tested in a series of 84 primary CRCs and there was significant correlation between Cten and Src expression (p=0.001).We conclude that Src is a novel and functionally important target of the Cten signalling pathway and that Cten protein causes post-transcriptional stabilisation of Src protein in order to promote EMT and possibly metastasis in CRC.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3530-3530
Author(s):  
Mengling Liu ◽  
Xiaojing Xu ◽  
Ke Peng ◽  
Pengcong Hou ◽  
Qing Liu ◽  
...  

3530 Background: BRAF mutations occur in about 10% of colorectal cancer (CRC), more than 90% of which are BRAF V600E mutation. Patients (pts) with BRAF V600E mutation present poor prognosis. Complex molecular biological mechanisms in this population have not been well annotated. HPSE plays a multifunctional role in cell proliferation, invasion and angiogenesis in cancer. Here we identified differentially expressed genes (DEGs) between pts with and without BRAF V600E mutation, and then focused on the function of HPSE, one of top DEGs, in BRAF V600E-mutant CRC. Methods: Clinical and transcriptional data of pts with CRC from The Cancer Genome Atlas (TCGA, n = 525) database and GSE39582 dataset (n = 510) were analyzed to explore the top overlapped DEGs between BRAF V600E mutant and wild-type pts. Records and tumor samples of 172 pts with BRAF V600E-mutant CRC diagnosed at Zhongshan Hospital Fudan University between 6/2015-12/2018 were collected. The HPSE protein expression status of tumor samples was evaluated by immunohistochemistry staining. Moderate or strong staining in > 25% of tumor cells was interpreted as HPSE positive. Overall survival (OS) was analyzed using Kaplan-Meier Curves with Log-rank test and multivariable Cox regression. Next, lentiviral shRNA-based silencing of HPSE was performed in two BRAF V600E-mutant CRC cell lines (HT-29, RKO). The effect of HPSE on tumor growth was investigated through colony formation assays, cell cycle assays and subcutaneous xenograft models. Results: The top overlapped genes of the DEGs list included HPSE, TFF2, AXIN2, MLH1, RNF43, EPM2AIP1. Among them, HPSE had significantly high expression in BRAF V600E-mutant group. Of 172 pts with BRAF V600E mutation, 83 were identified as HPSE positive and 89 were negative. Two groups were generally well balanced on age (p = 0.096), gender (p = 1.000), location (p = 0.658), stage (p = 0.249) and MMR status (p = 0.129). HPSE positive pts had a significantly worse OS in comparison to HPSE negative pts (p = 0.037, median OS not reached). The multivariate analysis showed that HPSE positive was independently associated with inferior OS [HR 1.97 (95%CI: 1.02 – 3.80), p = 0.044). Silencing HPSE gene impaired colony formation activity significantly and arrested more cells in G0/G1 phase of BRAF V600E-mutant CRC cell lines. Tumor growth was inhibited apparently in HPSE-silencing xenograft models. Conclusions: Pts with BRAF V600E-mutant CRC had a high HPSE expression level, while HPSE protein expression was an independent prognostic factor for this population. The silencing of HPSE expression in BRAF V600E-mutant CRC cell lines inhibited cell proliferation and tumor growth in vitro and in vivo. HPSE may contribute to the poor prognosis of BRAF V600E-mutant CRC and might be a promising therapeutic target for this subtype of CRC.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xue-Lin Lin ◽  
Zhao-Yun Zheng ◽  
Qing-Shan Zhang ◽  
Zhen Zhang ◽  
You-Zhi An

Abstract Objective To investigate the expression of miR-195 and its target gene Bcl-2 in intervertebral disc degeneration (IVDD) and its effect on nucleus pulposus (NP) cell apoptosis. Methods The expressions of miR-195 and Bcl-2 in NP tissues of IVDD patients were quantified by qRT-PCR and western blotting, respectively. NP cells were divided into blank group, TNF-α group, TNF-α + miR-NC group, TNF-α + siBcl-2 group, and TNF-α + miR-195 inhibitors + siBcl-2 group. Cell proliferation was detected by MTT assay, cell apoptosis evaluated by flow cytometry, and mitochondrial membrane potential (MMP) tested by JC-1 staining. Moreover, the function of miR-195 on IVDD in vivo was investigated using a puncture-induced IVDD rat model. Results IVDD patients had significantly increased miR-195 expression and decreased Bcl-2 protein expression in NP tissues. The expression of miR-195 was negatively correlated with the expression of Bcl-2 in IVDD patients. Dual-luciferase reporter gene assay indicated that Bcl-2 was a target gene of miR-195. In comparison with blank group, TNF-α group showed decreased cell proliferation and MMP, increased cell apoptosis, upregulated expression of miR-195, Bax, and cleaved caspase 3, and downregulated Bcl-2 protein, while these changes were attenuated by miR-195 inhibitors. Additionally, siBcl-2 can reverse the protective effect of miR-195 inhibitors on TNF-α-induced NP cells. Besides, inhibition of miR-195 alleviated IVDD degeneration and NP cell apoptosis in the rat model. Conclusion MiR-195 was significantly upregulated in NP tissues of IVDD patients, and inhibition of miR-195 could protect human NP cells from TNF-α-induced apoptosis via upregulation of Bcl-2.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Caihong Wen ◽  
Xiaoqing Feng ◽  
Honggang Yuan ◽  
Yong Gong ◽  
Guangsheng Wang

Abstract Background Circular RNAs (circRNAs) feature prominently in tumor progression. However, the biological function and molecular mechanism of circ_0003266 in colorectal cancer (CRC) require further investigation. Methods Circ_0003266 expression in 46 pairs CRC tissues / adjacent tissues, and CRC cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR); after circ_0003266 was overexpressed or knocked down in CRC cells, cell proliferation, apoptosis, migration, and invasion were evaluated by the cell counting kit-8 (CCK-8), flow cytometry, and Transwell assays, respectively; the interaction among circ_0003266, miR-503-5p, and programmed cell death 4 (PDCD4) was confirmed using bioinformatics analysis and dual-luciferase reporter assay; PDCD4 protein expression in CRC cells was quantified using Western blot. Results Circ_0003266 was significantly lowly expressed in CRC tissues and cell lines. Circ_0003266 overexpression markedly repressed CRC cell proliferation, migration, and invasion, and accelerated the cell apoptosis, but its overexpression promoted the malignant phenotypes of CRC cells. PDCD4 was a direct target of miR-503-5p and circ_0003266 promoted PDCD4 expression by competitively sponging miR-503-5p. Conclusion Circ_0003266 suppresses the CRC progression via sponging miR-503-5p and regulating PDCD4 expressions, which suggests that circ_0003266 may serve as a novel target for the treatment of CRC.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jingpeng Wang ◽  
Shuyuan Li ◽  
Gaofeng Zhang ◽  
Huihua Han

Abstract Background Sevoflurane (Sev), a commonly used volatile anesthetic, has been reported to inhibit the process of colorectal cancer (CRC). Circular RNAs (circRNAs) are revealed to participate in the pathogenesis of CRC. This study aims to reveal the mechanism of hsa_circ_0000231 in Sev-mediated CRC progression. Methods The expression of hsa_circ_0000231 and microRNA-622 (miR-622) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was determined by western blot analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell colony formation and DNA content quantitation assays. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and propidium iodide double staining and caspase 3 activity assays. Cell migration and invasion were investigated by wound-healing and transwell invasion assays, respectively. The putative relationship between hsa_circ_0000231 and miR-622 was predicted by circular RNA Interactome online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of hsa_circ_0000231 on Sev-mediated tumor formation in vivo were presented by in vivo assay. Results Hsa_circ_0000231 expression was upregulated, while miR-622 was downregulated in CRC tissues and cells compared with control groups. Sev treatment decreased hsa_circ_0000231 expression, but increased miR-622 expression in CRC cells. Sev treatment suppressed cell proliferation, migration and invasion, and induced cell apoptosis. Hsa_circ_0000231 overexpression restored Sev-mediated CRC progression in vitro. Additionally, hsa_circ_0000231 acted as a sponge of miR-622, and miR-622 inhibitors reversed the impacts of hsa_circ_0000231 silencing on CRC process. Furthermore, Sev treatment inhibited tumor growth by regulating hsa_circ_0000231 in vivo. Conclusion Hsa_circ_0000231 attenuated Sev-aroused repression impacts on CRC development by sponging miR-622. This findings may provide an appropriate anesthetic protocol for CRC sufferers undergoing surgery.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yixin Tong ◽  
Yuan Huang ◽  
Yuchao Zhang ◽  
Xiangtai Zeng ◽  
Mei Yan ◽  
...  

AbstractAt present, colorectal cancer (CRC) has become a serious threat to human health in the world. Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that may be involved in several physiological processes. However, whether DPP3 affects the development and progression of CRC remains a mystery. This study is the first to demonstrate the role of DPP3 in CRC. Firstly, the results of immunohistochemistry analysis showed the upregulation of DPP3 in CRC tissues compared with normal tissues, which is statistically analyzed to be positively correlated with lymphatic metastasis, pathological stage, positive number of lymph nodes. Moreover, the high expression of DPP3 predicts poor prognosis in CRC patients. In addition, the results of cell dysfunction experiments clarified that the downregulation of DPP3 significantly inhibited cell proliferation, colony formation, cell migration, and promoted apoptosis in vitro. DPP3 depletion could induce cell apoptosis by upregulating the expression of BID, BIM, Caspase3, Caspase8, HSP60, p21, p27, p53, and SMAC. In addition, downregulation of DPP3 can reduce tumorigenicity of CRC cells in vivo. Furthermore, CDK1 is determined to be a downstream target of DPP3-mediated regulation of CRC by RNA-seq, qPCR, and WB. The interaction between DPP3 and CDK1 shows mutual regulation. Specifically, downregulation of DPP3 can accentuate the effects of CDK1 knockdown on the function of CRC cells. Overexpression of CDK1 alleviates the inhibitory effects of DPP3 knockdown in CRC cells. In summary, DPP3 has oncogene-like functions in the development and progression of CRC by targeting CDK1, which may be an effective molecular target for the prognosis and treatment of CRC.


Sign in / Sign up

Export Citation Format

Share Document