miR-31-5p/SOX4 Axis Affects Autophagy and Apoptosis of Chondrocytes by Regulating Extracellular Regulated Protein Kinase/Mechanical Target of Rapamycin Kinase Signalling

Pathobiology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Fei Xu ◽  
Yong-Ming Lv ◽  
Hai-Bin Wang ◽  
Ying-Chun Song

<b><i>Background:</i></b> Osteoarthritis (OA) is a common type of degenerative joint diseases that is regulated by a combination of complex intercellular signals and modulators, including non-coding RNAs. Mounting evidence suggests that miR-31-5p is physiologically involved in the regulation of chondrocytes, but the mechanism remains unclear. <b><i>Methods:</i></b> Expression levels of miR-31-5p and SOX4 in OA cartilage tissues and in IL-1β-stimulated chondrocytes were examined by quantification polymerase chain reaction (q-PCR) or immunohistochemistry assays. Cell proliferation and apoptosis were detected by Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Expression of LC3 was detected using immunofluorescence staining. Expressions of autophagy-related proteins and extracellular regulated protein kinase (ERK)/mechanical target of rapamycin kinase (mTORC1) signal-related proteins were measured by Western blot analysis. Molecular interaction was validated by dual luciferase reporter assay. <b><i>Results:</i></b> Downregulation of miR-31-5p and upregulation of SOX4 were observed in both OA patients and OA chondrocytes. Mechanistic experiments revealed that miR-31-5p negatively modulated SOX4 expression by directly targeting its 3′- untranslated region. Moreover, overexpression of miR-31-5p suppressed the activation of mTORC1 in an ERK-dependent manner by inhibiting SOX4. Further functional experiments demonstrated that overexpressing miR-31-5p in OA chondrocytes markedly promoted its proliferation and autophagy while inhibiting apoptosis. However, these effects were abolished by overexpression of SOX4 or treatment with 3BDO, an mTOR activator. <b><i>Conclusion:</i></b> These results demonstrated that miR-31-5p enhanced survival and autophagy of OA chondrocytes through inactivation of mTORC1 via directly targeting SOX4, suggesting that miR-31-5p may play a protective role in OA progression.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jizhe Yu ◽  
Yushuang Qin ◽  
Naxin Zhou

Abstract Background The dysregulation of circular RNAs (circRNAs) has been identified in various human diseases, including osteoarthritis (OA). The purpose of this study was to identify the role and mechanism of circ_SLC39A8 in regulating the progression of OA. Methods The expression levels of circ_SLC39A8, miR-591, and its potential target gene, interleukin-1-receptor-associated kinase 3 (IRAK3), were identified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The relationship between miR-591 and circ_SLC39A8 or IRAK3 was predicted by bioinformatics tools and verified by dual-luciferase reporter. Results Circ_SLC39A8 and IRAK3 were upregulated and miR-591 was downregulated in OA cartilage tissues. Knockdown of circ_SLC39A8 inhibited apoptosis and inflammation in OA chondrocytes, while these effects were reversed by downregulating miR-591. Promotion cell viability effects of miR-591 were partially reversed by IRAK3 overexpression. Conclusion Our findings indicated that knockdown of circ_SLC39A8 delayed the progression of OA via modulating the miR-591-IRAK3 axis, providing new insight into the molecular mechanisms of OA pathogenesis.


2020 ◽  
Vol 15 (1) ◽  
pp. 1013-1023
Author(s):  
Lina Xing ◽  
Jinhai Ren ◽  
Xiaonan Guo ◽  
Shukai Qiao ◽  
Tian Tian

AbstractPrevious research has revealed the involvement of microRNA-212-5p (miR-212-5p) and cyclin T2 (CCNT2) in acute myeloid leukemia (AML). However, whether the miR-212-5p/CCNT2 axis is required for the function of decitabine in AML has not been well elucidated. Quantitative reverse transcription-polymerase chain reaction was used to examine enrichment of miR-212-5p. The relationship between CCNT2 and miR-212-5p was verified by the luciferase reporter assay. Cell apoptosis was evaluated by flow cytometry and western blot. CCK-8 assay was performed to determine cell viability. Decitabine significantly repressed cell viability, while promoted cell apoptosis. Meanwhile, the expression levels of cyclinD1, CDK4, and Bcl-2 were suppressed in cells with decitabine exposure, but Bax and caspase-3 expression levels were upregulated. Besides, miR-212-5p upregulation had the similar function with decitabine in AML cell proliferation and apoptosis. Subsequently, restoration of CCNT2 attenuated miR-212-5p overexpression-induced effects in Kasumi-1 and SKNO-1 cells. In addition, miR-212-5p depletion reversed decitabine-induced CCNT2 downregulation. The miR-212-5p/CCNT2 axis had an implication in the anti-leukemic effect of decitabine in AML.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wei Zheng ◽  
Guanhua Hou ◽  
Yong Li

Abstract Background Circular RNA (circRNA) has been shown to be associated with osteoarthritis (OA) progression. Circ_0116061 has been found to be highly expressed in OA cartilage tissues, but its role and mechanism in OA progression remain unclear. Methods Expression levels of circ_0116061, microRNA (miR)-200b-5p, and Smad ubiquitin regulatory factor 2 (SMURF2) were detected using quantitative real-time PCR. The proliferation and apoptosis of cells were measured using cell counting kit 8 (CCK8) assay, colony formation assay, and flow cytometry. Furthermore, the protein levels of proliferation-related marker, apoptosis-related markers, inflammatory factors, and SMURF2 were tested using western blot (WB) analysis. In addition, the interaction between miR-200b-3p and circ_0116061 or SMURF2 was examined using dual-luciferase reporter assay and biotin-labeled RNA pull-down assay. Results Circ_0116061 and SMURF2 were highly expressed, and miR-200b-3p was lowly expressed in OA cartilage tissues. Knockdown of circ_0116061 could promote the proliferation and inhibit the apoptosis and inflammation of OA chondrocytes. MiR-200b-3p could be sponged by circ_0116061, and its inhibitor could reverse the regulation of circ_0116061 silencing on the biological functions of OA chondrocytes. SMURF2 was a target of miR-200b-3p, and its expression was positively regulated by circ_0116061. Silencing of SMURF2 also could enhance the proliferation and suppress the apoptosis and inflammation of OA chondrocytes. Furthermore, the regulation of circ_0116061 silencing on the biological functions of OA chondrocytes also could be reversed by SMURF2 overexpression. Conclusion Our data showed that circ_0116061 might regulate the miR-200b-3p/SMURF2 axis to promote the progression of OA.


2020 ◽  
Vol 42 (5-6) ◽  
pp. 187-194
Author(s):  
Ruixiang Li ◽  
Jiahua Hu ◽  
Sue Cao

Temporal lobe epilepsy (TLE) is the most familiar localized epilepsy in children. MicroRNAs (miRNAs) are essential for the inhibition or promotion of numerous diseases. This study aimed to detect the expression of miR-135b-5p and primarily uncover its underlying function and mechanism in children with TLE. Quantitative real-time polymerase chain reaction was used to evaluate the expression of miR-135b-5p in children with TLE and in a rat model of epilepsy. MTT assay and flow cytometric apoptosis assay were conducted to evaluate the effects of miR-135b-5p on cell viability and apoptosis. Additionally, the dual luciferase reporter assay was performed to confirm the direct target of miR-135b-5p. Our data showed that the expression of miR-135b-5p was significantly decreased in children with TLE and in the epileptic rat neuron model. The dysregulation of miR-135b-5p could serve as a promising diagnostic biomarker for children with TLE. The overexpression of miR-135b-5p moderated the adverse influence on cell viability and apoptosis induced by magnesium-free medium. SIRT1 was identified as a target gene of miR-135b-5p. These results proved that miR-135b-5p might serve as a potential diagnostic biomarker in children with TLE. Overexpression of miR-135b-5p alleviates the postepileptic influence on cell viability and apoptosis by targeting SIRT1.


2022 ◽  
Vol 12 (2) ◽  
pp. 306-315
Author(s):  
Jie Song ◽  
Cheng Chen ◽  
Hui Zhang

Osteoarthritis (OA) is a chronic and inflammatory disease, leading to pain or even disability in severe cases. LncRNA PCGEM1 (PCGEM1) is reported to be dysregulated, serving as critical regulators in various human diseases, including OA. However, the biological role of PCGEM1 and its underlying mechanisms during OA remained unclear. In the present study, CHON-001 cells were exposed to interleukin (IL)-1β to construct the OA cell model. Expression of PCGEM1 and miR-152-3p in cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Corresponding commercial kits were used to measure the expressions of lactate dehydrogenase (LDH), inter-leukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Protein levels of apoptosis-related proteins, cleaved-Caspase3 and Caspase3, were detected by Western blotting. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) tetrazolium (MTT) and flow cytometry assays were utilized for the determination of cell proliferation and apoptosis. The association between PCGEN1 and miR-152-3p was confirmed by a dual-luciferase reporter assay. From the results, PCGEM1 expression was significantly increased while miR-152-3p was inhibited in CHON-001 cells after IL-1β treatment. In addition, silencing of PCGEM1 could promote proliferation, inhibit the apoptosis, suppress LDH level and alleviate inflammation response caused by IL-1β in CHON-001 cells by sponging miR-152-3p. In a word, PCGEM1 down-regulation suppressed OA progression by the regulation of miR-152-3p expression, functioning as a potential therapeutic target for OA clinical treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qin Zhang ◽  
Jing Long ◽  
Nannan Li ◽  
Xuelian Ma ◽  
Lisheng Zheng

Hyperglycemia exposure results in the dysfunction of endothelial cells (ECs) and the development of diabetic complications. Circular RNAs (circRNAs) have been demonstrated to play critical roles in EC dysfunction. The current study aimed to explore the role and mechanism of circRNA CLIP–associating protein 2 (circ_CLASP2, hsa_circ_0064772) on HG-induced dysfunction in human umbilical vein endothelial cells (HUVECs). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess the levels of circ_CLASP2, miR-140-5p and F-box, and WD repeat domain-containing 7 (FBXW7). The stability of circ_CLASP2 was identified by the actinomycin D and ribonuclease (RNase) R assays. Cell colony formation, proliferation, and apoptosis were measured by a standard colony formation assay, colorimetric 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay, and flow cytometry, respectively. Western blot analysis was performed to determine the expression of related proteins. Targeted correlations among circ_CLASP2, miR-140-5p, and FBXW7 were confirmed by dual-luciferase reporter assay. High glucose (HG) exposure downregulated the expression of circ_CLASP2 in HUVECs. Circ_CLASP2 overexpression or miR-140-5p knockdown promoted proliferation and inhibited apoptosis of HUVECs under HG conditions. Circ_CLASP2 directly interacted with miR-140-5p via pairing to miR-140-5p. The regulation of circ_CLASP2 overexpression on HG-induced HUVEC dysfunction was mediated by miR-140-5p. Moreover, FBXW7 was a direct target of miR-140-5p, and miR-140-5p regulated HG-induced HUVEC dysfunction via FBXW7. Furthermore, circ_CLASP2 mediated FBXW7 expression through sponging miR-140-5p. Our current study suggested that the overexpression of circ_CLASP2 protected HUVEC from HG-induced dysfunction at least partly through the regulation of the miR-140-5p/FBXW7 axis, highlighting a novel therapeutic approach for the treatment of diabetic-associated vascular injury.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chuanliang Liu ◽  
Jieqiong Zhang ◽  
Xuejie Lun ◽  
Lei Li

Objective. To explore the effect and related mechanism of LncRNA PVT1 on hypoxia-induced cardiomyocyte injury. Methods. PVT1RNA and miR-214-3p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell vitality and apoptosis were, respectively, evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry analysis. Starbase and Dual luciferase reporter (DLR) gene assay was employed to validate the interaction between miR-214-3p and PVT1. Results. PVT1 was statistically upregulated, and miR-214-3p was statistically downregulated in hypoxia-induced H9c2 cells. The survival rate of H9c2 cells induced by hypoxia decreased statistically, while the apoptosis rate increased statistically ( P < 0.05 ). PVT1 knockdown upregulated the hypoxia-induced H9c2 cell viability and inhibited apoptosis. DLR assay verified the targeting relationship between PVT1 and miR-214-3p. In addition, miR-214-3p inhibitors reversed the viability of H9c2 cells with PVT1 knockout and promoted apoptosis. Conclusion. Silencing PVT1 can enhance the hypoxia-induced H9c2 cell viability and inhibit apoptosis, providing a potential target for the treatment of cardiovascular diseases.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Nan Wang ◽  
Jia-Xing He ◽  
Guo-Zhan Jia ◽  
Ke Wang ◽  
Shuai Zhou ◽  
...  

Abstract Background Recent studies suggest that long noncoding RNAs (lncRNAs) play an important role in tumorigenesis. As a newly identified lncRNA, the role of XIST in colorectal cancer (CRC) has not been established. Here, we sought to characterize the role of XIST and its associated regulatory network in CRC cells. Methods Expression of XIST mRNA, miR-497-5p, and forkhead box k1 (FOXK1) in CRC cells and tissues were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Proliferation and apoptosis of CRC cells were determined using the CCK-8 cell counting assay and flow cytometry. The rate of cell migration and invasion was determined using a transwell assay. The relationships between XIST, miR-497-5p, and FOXK1 were predicted and confirmed using a dual-luciferase reporter assay. Expression of FOXK1 protein was quantified by Western blot. Results XIST and FOXK1 expression were significantly upregulated in CRC tissues and cell lines, while miR-497-5p expression was downregulated. XIST knockdown significantly suppressed CRC cell proliferation, migration, and invasion. Silencing of XIST also reversed the downregulation of miR-497-5p and upregulation of FOXK1. Moreover, blocking XIST expression was shown to inhibit CRC tumor growth in vivo and the effects were antagonized by the loss of miR-497-5p. miR-497-5p was shown to act as a sponge of XIST and also targeted FOXK1 in CRC cells. Conclusions XIST was shown to promote the malignancy of CRC cells by competitively binding to miR-497-5p, resulting in an increase in FOXK1 expression. These results suggest that targeting of XIST may represent a possible treatment for CRC.


2020 ◽  
Vol 19 ◽  
pp. 153303382094042
Author(s):  
Wei Zou ◽  
Jun Cheng

Background: MiR-887 has been proved to promote the tumorigenesis in diverse cancers, but its function and downstream mechanism in hepatocellular carcinoma remain obscure. Methods: Quantitative real-time polymerase chain reaction was performed to detect the expression levels of miR-887 in hepatocellular carcinoma tissues and cell lines. MiR-887 mimics and miR-887 inhibitor were transfected into Huh7 and MHCC97H to establish miR-887 overexpression or inhibition models. Cell Counting Kit-8 and colony formation experiment were conducted to monitor cell proliferation. Subcutaneous xenotransplanted tumor model and tail vein injection model in mice were also established to further verify the effect of miR-887 on hepatocellular carcinoma in vivo. The targeting relationship between miR-887 and von Hippel-Lindau tumor suppressor (VHL) was determined by quantitative real-time polymerase chain reaction, Western blot, and luciferase reporter gene assay. Results: miR-887 expression in hepatocellular carcinoma tissues was significantly upregulated. Compared with the control cells, the proliferation and metastasis of cancer cells were enhanced by miR-887 mimics and suppressed by miR-887 inhibitor. Compared with control mice, the volume and weight of subcutaneous tumors of mice in the miR-887 mimics group were significantly elevated, and the significant increase was found in the occurrence of lung metastasis. Moreover, bioinformatics tools showed that miR-887 and VHL had 2 binding sites. Luciferase activity assay demonstrated that miR-887 can inhibit the luciferase activity of VHL, and miR-887 mimics could reduce the expressions of VHL at both messenger RNA and protein levels to increase hypoxia-inducible factor α expression. Conclusion: The upregulation of miR-887 could facilitate the proliferation and metastasis of hepatocellular carcinoma cells via targeting VHL.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Longhuo Wu ◽  
Haiqing Liu ◽  
Rui Zhang ◽  
Linfu Li ◽  
Jialin Li ◽  
...  

Osteoarthritis (OA) is a degenerative joint disease that affects millions of people. Currently, there is no effective drug treatment for it. The purpose of this study is to investigate the chondroprotective effects ofMurraya exotica(L.) on OA. The rat OA models were duplicated to prepare for separating OA chondrocytes, synovial fluid (SF), and serum containingM. exotica(50 mg/kg, 100 mg/kg, and 200 mg/kg),M. exoticashowed the activity of decreasing the contents of TNF-αand IL-1βin SF and the chondrocyte apoptosis in a dose-dependent manner. To investigate the probable mechanism, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to determine gene expression and protein profiles, respectively. The results reveal thatM. exoticacan downregulate mRNA and protein expressions ofβ-catenin and COX-2 and reporter activity significantly. Conclusively,M. exoticaexhibits antiapoptotic chondroprotective activity probably through inhibitingβ-catenin signaling.


Sign in / Sign up

Export Citation Format

Share Document