scholarly journals Effect of Mobility on (I-V) Characteristics of Gaas MESFET

Author(s):  
M Azizi ◽  
C Azizi

<p class="Titre51"><span lang="EN-US">We present in this paper an analytical model of the current–voltage (I-V) characteristics for submicron GaAs MESFET transistors. This model takes into account the analysis of the charge distribution in the active region and incorporate a field depended electron mobility, velocity saturation and charge build-up in the channel. We propose in this frame work an algorithm of simulation based on mathematical expressions obtained previously. We propose a new mobility model describing the electric field-dependent. The predictions of the simulator are compared with the experimental data [01] and have been shown to be good.</span></p>

1992 ◽  
Vol 03 (02) ◽  
pp. 201-233 ◽  
Author(s):  
M.S. SHUR ◽  
T.A. FJELDLY ◽  
T. YTTERDAL ◽  
K. LEE

We describe a new, unified model for MEtal Semiconductor Field Effect Transistors (MESFETs) which covers all ranges of operation, including the subthreshold regime. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics are described by continuous, analytical expressions with relatively few, physically based parameters. The model includes effects such as velocity saturation, parasitic series resistances, the dependence of the threshold voltage on drain bias, finite output conductance in saturation, and temperature dependence of the device parameters. We also describe a parameter extraction routine which allows the model parameters to be derived in a straightforward fashion from experimental data. The model has been incorporated into our new circuit simulator AIM-Spice. The new device characterization is applied with good results to a typical ion-implanted GaAs MESFET and a delta-doped MESFET.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2948
Author(s):  
Soufia Mohammadi ◽  
Pilar Monsalvete Álvarez de Uribarri ◽  
Ursula Eicker

Biogas technology is an important alternative energy source worldwide. Blackwater and kitchen refuse represent ideal waste streams for bioenergy recovery through anaerobic co-digestion. Modeling of the biokinetics of anaerobic digestion on several aspects, such as microbial activity, substrate degradation, and methane production, from co-digestion of black water (BW) and kitchen refuse (KR) was the objective of this research. A mathematical model was developed towards a simulation based on mass balances on biomass, the organic substrate, and biogas. The model was implemented in INSEL and experimental data from the literature were used for model validation. The study shows that the simulation results fit well with the experimental data. The energy consumption and generation potential of anaerobic co-digestion of BW and KR were calculated to investigate if the produced biogas could supply the digester’s energy demand. This study can be used to pre-design anaerobic digestion systems in eco-districts.


Author(s):  
D. A. Rodionov ◽  
S. I. Lazarev ◽  
K. K. Polyansky ◽  
E. V. Eckert

Experimental data on the retention coefficient and the output specific flow are obtained. The test solutions were goat and cow's milk whey after obtaining cheese. The description, general view and technological scheme of a pilot installation of a tubular type are given. The studies were carried out on semipermeable tubular type ultrafiltration membranes manufactured by AO "ZAVKOM". Based on the studies, graphical dependences of the retention coefficient on the specific output stream were constructed and analyzed. During the analysis, it was noted that with an increase in the output specific flow of the solvent, the retention coefficient decreases. The reason for this is the boundary layers of fat and protein formed in the near-membrane layers, which prevents the passage of protein molecules through the pores of the membrane. Also during the experiment, it was noted that goat milk serum has a more oily structure and requires prior separation. For the theoretical calculation of the retention coefficient and specific output stream, mathematical expressions are developed and numerical values of the values of empirical coefficients are obtained. The developed mathematical expressions describe the experimental data with good confidence. The obtained experimental and calculated data can be used with great reliability in the calculations of mass-transported flows of substances through semipermeable membranes, as well as in engineering methods for calculating and predicting the effectiveness of the use of membrane processes for the concentration of whey.


Author(s):  
А.А. Семакова ◽  
В.В. Романов ◽  
Н.Л. Баженов ◽  
К.Д. Мынбаев ◽  
К.Д. Моисеев

The results of a study of the electroluminescence of the asymmetric InAs/InAs1−ySby/InAsSbP LED heterostructures with a molar fraction of InSb in the ternary solid solution in the active region y=0.15 and y=0.16 in the temperature range 4.2−300 K are presented. Based on the experimental data, the formation of a staggered type II heterojunction at the InAs1−ySby/InAsSbP heterointerface was determined. The dominant contribution of the interface radiative transitions at the type II heterointerface in the temperature range 4.2−180 K was shown, which makes it possible to minimize the temperature dependence of the operating wavelength of the LEDs.


Author(s):  
Merouane Habib ◽  
Senouci Mohammed

In this paper, we investigate the no-reacting swirling flow by using the numerical simulation based to the unsteady Reynolds-averaged Navier-Stokes approach. The numerical simulation was realized by using a computational fluid dynamics CFD code. The governing equations are solved by using the finite volume method with two classical models of turbulence K-epsilon and Shear Stress K-ω. The objective of this paper is therefore to evaluate the performance of the two models in predicting the recirculation zones in a swirled turbulent flow. The current models are validated by comparing the numerical results of the axial, radial and tangential velocities to the experimental data from literature.


PAMM ◽  
2011 ◽  
Vol 11 (1) ◽  
pp. 543-544
Author(s):  
Tung Phan Van ◽  
Katja Jöchen ◽  
Thomas Böhlke

1969 ◽  
Vol 3 (2) ◽  
pp. 269-280 ◽  
Author(s):  
L. B. Kapp ◽  
P. H. Richards

The problem is to determine the electrical and thermal conductivities of high pressure are plasmas from measurements of the current—voltage characteristics of the are and a single radial temperature profile. A new numerical method is described together with the corresponding computer program. The latter is applied to some recent measurements on wall-stabilized nitrogen ares, covering the temperature range 4500—11,000 °K, for which radiation can be neglected, and the results are compared with those of other workers.


2011 ◽  
Vol 25 (10) ◽  
pp. 739-745 ◽  
Author(s):  
N. A. AMIN ◽  
M. T. AHMADI ◽  
Z. JOHARI ◽  
S. M. MOUSAVI ◽  
R. ISMAIL

In this letter, we investigate the transport properties of one-dimensional semiconducting Graphene nanoribbons (GNRs) with parabolic band structure near the Dirac point. The analytical model of effective mobility is developed by using the conductance approach, which differs from the conventional method of extracting the effective mobility using the well-known Matthiessen rule. Graphene nanoribbons conductance model developed was applied in the Drude model to obtain the effective mobility, which then gives nearly close comparison with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document