scholarly journals Norcepharadione B attenuates H2O2-induced neuronal injury by upregulating cellular antioxidants and inhibiting volume-sensitive Cl− channel

2019 ◽  
Vol 244 (16) ◽  
pp. 1463-1474 ◽  
Author(s):  
Xin Jia ◽  
Yan Liu ◽  
Xing Li ◽  
Cong Huo ◽  
Dongtao Li ◽  
...  

Oxidative stress acts as an essential culprit factor in the development of stroke and Alzheimer’s disease. Norcepharadione B possesses various pharmacologic features as an extract obtained from Houttuynia cordata. Nevertheless, the anti-apoptotic and neuroprotective characteristics of norcepharadione B remain unclear. In this study, the neuronal protection effect provided by norcepharadione B against injury caused by hydrogen peroxide (H2O2) in HT22 cell as well as the fundamental mechanism was systematically explored. The neurotoxicity assays of hippocampal cells, which were co-cultured with H2O2, showed that norcepharadione B had the ability to insulate the toxicity induced by H2O2 with significant reduced cell apoptosis. Besides, norcepharadione B potentiated the activity of superoxide dismutase (SOD), increased the level of glutathione (GSH), and decreased malondialdehyde content. The H2O2-induced apoptotic protein Bax was suppressed, and the anti-apoptotic protein Bcl-2 was boosted by norcepharadione B. Norcepharadione B promoted Akt phosphorylation and further upregulated heme oxygenase (HO-1) in cells exposed to oxidative stress. However, the inductive effect of HO-1 by norcepharadione B was shut off via the PI3K/Akt inhibitor LY294002. Furthermore, 2-h incubation with H2O2 substantially increased cell volume in HT22 cells, while norcepharadione B effectively alleviated such effect by interrupting the activation of VSOR Cl− channel. Collectively, our data revealed protective properties of norcepharadione B in resisting oxidative stress induced by H2O2 through elevation of HO-1 in the dependence of PI3K/Akt and in inhibiting H2O2-induced cell swelling by VSOR Cl− channel obstruction in HT22 cells. Impact statement Norcepharadione B is an aporphine alkaloid compound extracted from Chinese herb Houttuynia cordata. It was well known for its anti-inflammatory, anti-cancer, and anti-platelet aggregation outcomes. Our study demonstrated that Norcepharadione B protected hippocampal neurons against oxidative stress and the resultant cell apoptosis upon H2O2 exposure. Meanwhile, Norcepharadione B also substantially reduced cell swelling induced by H2O2 via inhibiting VSOR Cl− channel in neurons. These findings uncovered the potential mechanisms of Norcepharadione B in protecting neuron apoptosis under oxidative stress and propose that Norcepharadione B may serve as a favorable herb medicine for restoring neuronal injury in the pathogenesis of stroke together with other neurodegenerative diseases.

2021 ◽  
Vol 12 ◽  
Author(s):  
Guangchan Jing ◽  
Huanyuan Wang ◽  
Fengwei Nan ◽  
Yuqin Liu ◽  
Mengren Zhang

P2X7/NLRP1/caspase-1 mediated neuronal injury plays an important role in diabetic cognitive impairment and eventually inflammatory cascade reaction. Chinese herbal compound Naofucong has been mainly used to treat cognitive disorders in Traditional Chinese Medicine The present study aimed to investigate whether its neuroprotective effects might be related to the inhibition of P2X7R/NLRP1/caspase-1 mediated neuronal injury or not. In this study, high glucose-induced HT22 hippocampal neurons were used to determine Naofucong-containing serum neuronal protective effects. Lentiviruses knock out of TXNIP and P2X7R was used to determine that protective effects of Naofucong was related to inflammatory response and P2X7/NLRP1/caspase-1 mediated neuronal injury. NAC was also used to inhibit oxidative stress, so as to determine that oxidative stress is an important starting factor for neuronal injury of HT22 cells cultured with high glucose. Naofucong decreased apoptosis, IL-1β and IL-18 levels in high glucose-induced HT22 hippocampal neuron cells. Naofucong suppressed NLRP1/caspase-1 mediated neuronal injury, and P2X7 was involved in process. HT22 cells cultured in high glucose had an internal environment with elevated oxidative stress, which could promote neuronal injury. The current study demonstrated that Naofucong could significantly improve high glucose-induced HT22 hippocampal neuron injury, which might be related to suppress P2X7R/NLRP1/caspase-1 pathway, which provides novel evidence to support the future clinical use of Naofucong.


2020 ◽  
Vol 55 (4) ◽  
pp. 357-366
Author(s):  
Wenyang Jin ◽  
Mizhu Sun ◽  
Bingbing Yuan ◽  
Runzhi Wang ◽  
Hongtao Yan ◽  
...  

Abstract Aims Ethanol is a small molecule capable of interacting with numerous targets in the brain, the mechanisms of which are complex and still poorly understood. Studies have revealed that ethanol-induced hippocampal neuronal injury is associated with oxidative stress. Grape seed procyanidin (GSP) is a new type of antioxidant that is believed to scavenge free radicals and be anti-inflammatory. This study evaluated the ability and mechanism by which the GSP improves ethanol-induced hippocampal neuronal injury. Methods Primary cultures of hippocampal neurons were exposed to ethanol (11, 33 and 66 mM, 1, 4, 8, 12 and 24 h) and the neuroprotective effects of GSP were assessed by evaluating the activity of superoxide dismutase (SOD), the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) and cell morphology. Results Our results indicated that GSP prevented ethanol-induced neuronal injury by reducing the levels of MDA and LDH, while increasing the activity of SOD. In addition, GSP increased the number of primary dendrites and total dendritic length per cell. Conclusion Together with previous findings, these results lend further support to the significance of developing GSP as a therapeutic tool for use in the treatment of alcohol use disorders.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Malk Eun Pak ◽  
You-Chang Oh ◽  
Yeo Jin Park ◽  
Jae Kwang Kim ◽  
Min-Gyeong Shin ◽  
...  

Since ancient times, Banhasasim-tang (BHS) has been used to treat functional dyspepsia in East Asia. Here, we aimed to determine the protective action of BHS on hippocampal neurons against oxidative stress. We investigated the functional effect of BHS on a scopolamine-induced mouse model, and molecular analysis was performed in glutamate-induced HT22 cells. We observed that BHS administration ameliorated memory dysfunction in scopolamine-treated mice. BHS administration also increased neuronal survival and acetylcholine activity and phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus of mice. In hippocampal cells, BHS treatment rescued glutamate-induced cytotoxicity, apoptosis, and oxidative stress. We observed an increase of HO-1 and a decrease of Nrf2 protein expression in glutamate-induced oxidative stress; however, the expression level of these proteins was significantly rescued by BHS treatment. BHS treatment also regulated phosphorylation of p38, p53, ERK, and CREB. Therefore, our data indicated that BHS may reduce oxidative stress through regulation of ERK-CREB and p38-p53 signaling in the hippocampus, resulting in decreased neuronal damage and improved memory in rodent models of neurodegenerative disease.


2021 ◽  
Vol 11 (11) ◽  
pp. 2128-2136
Author(s):  
Weihua Liu ◽  
Xinli Wang ◽  
Liangqin Du ◽  
Yanlin Sun

Excitotoxicity caused by glutamate severely damages the central nervous system, contributing to the progress of neurodegenerative diseases. Remifentanil is an ultra-short acting synthetic α-opioid receptor agonist and it protects the body against oxidative stress. Oxidative stress is a causative factor for neuronal cell death, contributing to the pathogenesis of neurological diseases. More importantly, remifentanil has been confirmed to have neuroprotective effects on cerebral ischemia. Hence, the aim of the present study was to investigate the molecular mechanism underlying the effect of remifentanil on glutamate (Glu)-induced oxidative stress and inflammation in hippocampal cells. In present study, the cell viability was detected via CCk-8 assay. The cell apoptosis was evaluated by tunel assay. Western blot was performed for measurement of protein expression level. Generation of ROS level was detected by the ROS Activity Assay Kit (KA3842, Abnova) and DCF-DA staining method. MDA and SOD levels were detected by corresponding kits. The results from the present study suggested that remifentanil enhanced cell viability, reduced cell apoptosis rate and prevented oxidative stress in glutamate-induced HT22 cells. The PPARγ/HO-1 pathway was activated by remifentanil. After inhibition of PPARγ/HO-1 pathway, the anti-apoptosis and anti-oxidative stress effects of remifentanil were abolished. In conclusion, remifentanil has anti-apoptosis and anti-oxidative stress effects on glutamate-induced HT22 Cells via PPARγ/HO-1 pathway. Hence, remifentanil is a promising agent for attenuation of cytotoxicity induced by glutamate, providing a new strategy for treatment of excitotoxicity caused by glutamate in the central nervous system.


2019 ◽  
Vol 20 (10) ◽  
pp. 2504 ◽  
Author(s):  
Mehtab Khan ◽  
Bart P. F. Rutten ◽  
Myeong Ok Kim

Oxidative stress has been considered as the main mediator in neurodegenerative diseases. A high-fat diet (HFD) and metabolic diseases result in oxidative stress generation, leading to various neurodegenerative diseases via molecular mechanisms that remain largely unknown. Protein kinases play an important role in the homeostasis between cell survival and cell apoptosis. The mammalian sterile 20-like kinase-1 (MST1) protein kinase plays an important role in cellular apoptosis in different organ systems, including the central nervous system. In this study, we evaluated the MST1/c-Jun N-terminal kinase (JNK) dependent oxidative damage mediated cognitive dysfunction in HFD-fed mice and stress-induced hippocampal HT22 (mice hippocampal) cells. Our Western blot and immunofluorescence results indicate that HFD and stress-induced hippocampal HT22 cells activate MST1/JNK/Caspase-3 (Casp-3) signaling, which regulates neuronal cell apoptosis and beta-amyloid-cleaving enzyme (BACE1) expression and leads to impaired cognition. Moreover, MST1 expression inhibition by shRNA significantly reduced JNK/Casp-3 signaling. Our in vivo and in vitro experiments mimicking metabolic stress, such as a high-fat diet, hyperglycemia, and an inflammatory response, determined that MST1 plays a key regulatory role in neuronal cell death and cognition, suggesting that MST1 could be a potential therapeutic target for numerous neurodegenerative diseases.


2018 ◽  
Vol 24 (1) ◽  
pp. 53-59
Author(s):  
Jong Min Kim ◽  
Seon Kyeong Park ◽  
Jin Yong Kang ◽  
Seong-kyeong Bae ◽  
Ga-Hee Jeong ◽  
...  

2020 ◽  
Vol 17 (4) ◽  
pp. 510-517
Author(s):  
Santiago Ortega-Gutierrez ◽  
Brandy Jones ◽  
Alan Mendez-Ruiz ◽  
Pankhil Shah ◽  
Michel T. Torbey

Background: Hypoxic-ischemic encephalopathy (HIE) is a major cause of pediatric and adult mortality and morbidity. Unfortunately, to date, no effective treatment has been identified. In the striatum, neuronal injury is analogous to the cellular mechanism of necrosis observed during NMethyl- D-Aspartate (NMDA) excitotoxicity. Adenosine acts as a neuromodulator in the central nervous system, the role of which relies mostly on controlling excitatory glutamatergic synapses. Objective: To examine the effect of pretreatment of SCH58261, an adenosine 2A (A2A) receptor antagonist and modulator of NMDA receptor function, following hypoxic-ischemia (HI) on sodium- potassium ATPase (Na+, K+-ATPase) activity and oxidative stress. Methods: Piglets (4-7 days old) were subjected to 30 min hypoxia and 7 min of airway occlusion producing asphyxic cardiac arrest. Groups were divided into four categories: HI samples were divided into HI-vehicle group (n = 5) and HI-A2A group (n = 5). Sham controls were divided into Sham vehicle (n = 5) and Sham A2A (n = 5) groups. Vehicle groups were pretreated with 0.9% saline, whereas A2A animals were pretreated with SCH58261 10 min prior to intervention. Striatum samples were collected 3 h post-arrest. Sodium-potassium ATPase (Na+, K+-ATPase) activity, malondialdehyde (MDA) + 4-hydroxyalkenals (4-HDA) and glutathione (GSH) levels were compared. Results: Pretreatment with SCH58261 significantly attenuated the decrease in Na+, K+-ATPase, decreased MDA+4-HDA levels and increased GSH in the HI-A2A group when compared to HIvehicle. Conclusion: A2A receptor activation may contribute to neuronal injury in newborn striatum after HI in association with decreased Na+, K+-ATPase activity and increased oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document