Genetic and Cellular Toxicology of Dental Resin Monomers

2006 ◽  
Vol 85 (10) ◽  
pp. 870-877 ◽  
Author(s):  
H. Schweikl ◽  
G. Spagnuolo ◽  
G. Schmalz

Monomers are released from dental resin materials, and thus cause adverse biological effects in mammalian cells. Cytotoxicity and genotoxicity of some of these methacrylates have been identified in a vast number of investigations during the last decade. It has been well-established that the co-monomer triethylene glycol dimethacrylate (TEGDMA) causes gene mutations in vitro. The formation of micronuclei is indicative of chromosomal damage and the induction of DNA strand breaks detected with monomers like TEGDMA and 2-hydroxyethyl methacrylate (HEMA). As a consequence of DNA damage, the mammalian cell cycle was delayed in both G1 and G2/M phases, depending on the concentrations of the monomers. Yet, the mechanisms underlying the genetic and cellular toxicology of resin monomers have remained obscure until recently. New findings indicate that increased oxidative stress results in an impairment of the cellular pro- and anti-oxidant redox balance caused by monomers. It has been demonstrated that monomers reduced the levels of the natural radical scavenger glutathione (GSH), which protects cell structures from damage caused by reactive oxygen species (ROS). Depletion of the intracellular GSH pool may then significantly contribute to cytotoxicity, because a related increase in ROS levels can activate pathways leading to apoptosis. Complementary, cytotoxic, and genotoxic effects of TEGDMA and HEMA are inhibited in the presence of ROS scavengers like N-acetylcysteine (NAC), ascorbate, and Trolox (vitamin E). Elevated intracellular levels of ROS can also activate a complex network of redox-responsive macromolecules, including redox-sensitive transcription factors like nuclear factor kappaB (NF-κB). It has been shown that NF-κB is activated probably to counteract HEMA-induced apoptosis. The induction of apoptosis by TEGDMA in human pulp cells has been associated with an inhibition of the phosphatidylinositol 3-kinase (PI3-K) cell-survival signaling pathway. Although the details of the mechanisms leading to cell death, genotoxicity, and cell-cycle delay are not completely understood, resin monomers may be able to alter the functions of the cells of the oral cavity. Pathways regulating cellular homeostasis, dentinogenesis, or tissue repair may be modified by monomers at concentrations well below those which cause acute cytotoxicity.

Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


2021 ◽  
Vol 11 (3) ◽  
pp. 1178
Author(s):  
Evanthia Tsoukou ◽  
Maxime Delit ◽  
Louise Treint ◽  
Paula Bourke ◽  
Daniela Boehm

The spread of multidrug-resistant bacteria poses a significant threat to human health. Plasma activated liquids (PAL) could be a promising alternative for microbial decontamination, where different PAL can possess diverse antimicrobial efficacies and cytotoxic profiles, depending on the range and concentration of their reactive chemical species. In this research, the biological activity of plasma activated water (PAW) on different biological targets including both microbiological and mammalian cells was investigated in vitro. The aim was to further an understanding of the specific role of distinct plasma reactive species, which is required to tailor plasma activated liquids for use in applications where high antimicrobial activity is required without adversely affecting the biology of eukaryotic cells. PAW was generated by glow and spark discharges, which provide selective generation of hydrogen peroxide, nitrite and nitrate in the liquid. The PAW made by either spark or glow discharges showed similar antimicrobial efficacy and stability of activity, despite the very different reactive oxygen species (ROS) and reactive nitrogen species profiles (RNS). However, different trends were observed for cytotoxic activities and effects on enzyme function, which were translated through the selective chemical species generation. These findings indicate very distinct mechanisms of action which may be exploited when tailoring plasma activated liquids to various applications. A remarkable stability to heat and pressure was noted for PAW generated with this set up, which broadens the application potential. These features also suggest that post plasma modifications and post generation stability can be harnessed as a further means of modulating the chemistry, activity and mode of delivery of plasma functionalised liquids. Overall, these results further understanding on how PAL generation may be tuned to provide candidate disinfectant agents for biomedical application or for bio-decontamination in diverse areas.


1970 ◽  
Vol 116 (4) ◽  
pp. 693-707 ◽  
Author(s):  
P. D. Lawley ◽  
Carolyn J. Thatcher

1. In neutral aqueous solution N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) yields salts of nitrocyanamide as u.v.-absorbing products. With cysteine, as found independently by Schulz & McCalla (1969), the principal product is 2-nitràminothiazoline-4-carboxylic acid. Both these reactions liberate the methylating species; thiols enhance the rate markedly at neutral pH values. An alternative reaction with thiols gives cystine, presumably via the unstable S-nitrosocysteine. 2. Thiols (glutathione or N-acetylcysteine) in vitro at about the concentration found in mammalian cells enhance the rate of methylation of DNA markedly over that in neutral solution. 3. Treatment of cultured mammalian cells with MNNG results in rapid methylation of nucleic acids, the extent being greater the higher the thiol content of the cells. Rodent embryo cells are more extensively methylated than mouse L-cells of the same thiol content. Cellular thiol concentrations are decreased by MNNG. Proteins are less methylated by MNNG than are nucleic acids. 4. Methylation of cells by dimethyl sulphate does not depend on cellular thiol content and protein is not less methylated than nucleic acids. Methylation by MNNG may therefore be thiol-stimulated in cells. 5. Both in vitro and in cells about 7% of the methylation of DNA by MNNG occurs at the 6-oxygen atom of guanine. The major products 7-methylguanine and 3-methyladenine are given by both MNNG and dimethyl sulphate, but dimethyl sulphate does not yield O6-methylguanine. Possible reaction mechanisms to account for this difference between these methylating agents and its possible significance as a determinant of their biological effects are discussed.


2011 ◽  
Vol 435 (2) ◽  
pp. 499-508 ◽  
Author(s):  
Anne Roobol ◽  
Jo Roobol ◽  
Martin J. Carden ◽  
Amandine Bastide ◽  
Anne E. Willis ◽  
...  

In vitro cultured mammalian cells respond to mild hypothermia (27–33 °C) by attenuating cellular processes and slowing and arresting the cell cycle. The slowing of the cell cycle at the upper range (31–33 °C) and its complete arrest at the lower range (27–28 °C) of mild hypothermia is effected by the activation of p53 and subsequent expression of p21. However, the mechanism by which cold is perceived in mammalian cells with the subsequent activation of p53 has remained undetermined. In the present paper, we report that the exposure of Chinese-hamster ovary-K1 cells to mildly hypothermic conditions activates the ATR (ataxia telangiectasia mutated- and Rad3-related kinase)–p53–p21 signalling pathway and is thus a key pathway involved in p53 activation upon mild hypothermia. In addition, we show that although p38MAPK (p38 mitogen-activated protein kinase) is also involved in activation of p53 upon mild hypothermia, this is probably the result of activation of p38MAPK by ATR. Furthermore, we show that cold-induced changes in cell membrane lipid composition are correlated with the activation of the ATR–p53–p21 pathway. Therefore we provide the first mechanistic detail of cell sensing and signalling upon mild hypothermia in mammalian cells leading to p53 and p21 activation, which is known to lead to cell cycle arrest.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
A. Byczek ◽  
J. Zawisza-Puchalka ◽  
A. Gruca ◽  
K. Papaj ◽  
G. Grynkiewicz ◽  
...  

Our previous studies on antiproliferative properties of genistein derivatives substituted at C7 hydroxyl group of the ring A revealed some compounds with antimitotic properties. The aim of this work was to synthesize their analogues substituted at the 4′-position of the ring B in genistein and to define their antiproliferative mechanism of action in selected cancer cell linesin vitro. C4′-substituted glycoconjugates were obtained in a three-step procedure: (1) alkylation with anω-bromoester; (2) deacylation; (3) Ferrier-type rearrangement glycosylation with acylated glycals. Biological effects including antiproliferative effects of the compounds, cell cycle, DNA lesions (ATM activation, H2A.X phosphorylation, and micronuclei formation), and autophagy were studied in human cancer cell lines. Some of the tested derivatives potently inhibited cell proliferation. The presence of a substituent at the 4′-position of the ring B in genistein correlated to a p53-independent G1 cell-cycle arrest. The derivatives substituted at C4′ did not induce DNA lesions and appeared to be nongenotoxic. The tested compounds induced autophagy and caused remarkable decrease of cell volume.


2004 ◽  
Vol 24 (2) ◽  
pp. 514-526 ◽  
Author(s):  
Po-Yuan Ke ◽  
Zee-Fen Chang

ABSTRACT The expression of human thymidine kinase 1 (hTK1) is highly dependent on the growth states and cell cycle stages in mammalian cells. The amount of hTK1 is significantly increased in the cells during progression to the S and M phases, and becomes barely detectable in the early G1 phase by a proteolytic control during mitotic exit. This tight regulation is important for providing the correct pool of dTTP for DNA synthesis at the right time in the cell cycle. Here, we investigated the mechanism responsible for mitotic degradation of hTK1. We show that hTK1 is degraded via a ubiquitin-proteasome pathway in mammalian cells and that anaphase-promoting complex/cyclosome (APC/C) activator Cdh1 is not only a necessary but also a rate-limiting factor for mitotic degradation of hTK1. Furthermore, a KEN box sequence located in the C-terminal region of hTK1 is required for its mitotic degradation and interaction capability with Cdh1. By in vitro ubiquitinylation assays, we demonstrated that hTK1 is targeted for degradation by the APC/C-Cdh1 ubiquitin ligase dependent on this KEN box motif. Taken together, we concluded that activation of the APC/C-Cdh1 complex during mitotic exit controls timing of hTK1 destruction, thus effectively minimizing dTTP formation from the salvage pathway in the early G1 phase of the cell cycle in mammalian cells.


2020 ◽  
pp. 12-22
Author(s):  
Natalia Bezdieniezhnykh ◽  
Aleksandra Lykhova ◽  
Hennadii Borschevskyi ◽  
Kateryna Dyakun ◽  
Ievgen Kruglov

Background. Presently, a prospective direction for the development of regenerative medicine in the world is the search for regulatory molecules and the identification of molecular targets to stimulate the body's endogenous regenerative potential. The concentrate of the deproteinized dermal layer of porcine skin (СDDLPS) is a new therapeutic agent with restorative properties, the action of which is directed on the induction of the self resources of cells. Aim. The assessment of the effect of СDDLPS on the proliferative activity of mammalian cells of different histogenesis in vitro. Materials and Methods. To determine the amino acid composition of the СDDLPS liquid chromatography and biochemical methods were used. The biological effects and mechanisms of action of the drug were investigated by cell culture and molecular biological methods. The research was carried out using stable cell lines: human keratinocytes (HaCaT cell line), porcine endothelial cells (PAE cell line), bovine kidney cells (MDBK cell line) and mouse fibroblasts (3T3A31 cell line). Results. The cells of the bovine kidney MDBK cell line were the most sensitive to the effect of the CDDLPS. Also, the obtained results suggest that, depending on the concentration, the drug not only stimulates cell proliferation by 10–30 %, but also significantly enhances biosynthetic processes in cells, in particular, protein synthesis by 20–40 %. Conclusions. CDDLPS is an effective and affordable therapeutic agent with restorative properties, the biological activity of which manifests itself in the activation of cell biosynthetic and proliferative potentials and is comparable to effects of some growth factors, in particular epidermal growth factor


2021 ◽  
Vol 22 (18) ◽  
pp. 9687
Author(s):  
Maria Teresa Russo ◽  
Gabriele De Luca ◽  
Nieves Palma ◽  
Paola Leopardi ◽  
Paolo Degan ◽  
...  

Furan is a volatile compound that is formed in foods during thermal processing. It is classified as a possible human carcinogen by international authorities based on sufficient evidence of carcinogenicity from studies in experimental animals. Although a vast number of studies both in vitro and in vivo have been performed to investigate furan genotoxicity, the results are inconsistent, and its carcinogenic mode of action remains to be clarified. Here, we address the mutagenic and clastogenic activity of furan and its prime reactive metabolite cis-2 butene-1,4-dial (BDA) in mammalian cells in culture and in mouse animal models in a search for DNA lesions responsible of these effects. To this aim, Fanconi anemia-derived human cell lines defective in the repair of DNA inter-strand crosslinks (ICLs) and Ogg1−/− mice defective in the removal of 8-hydroxyguanine from DNA, were used. We show that both furan and BDA present a weak (if any) mutagenic activity but are clear inducers of clastogenic damage. ICLs are strongly indicated as key lesions for chromosomal damage whereas oxidized base lesions are unlikely to play a critical role.


1998 ◽  
Vol 18 (12) ◽  
pp. 7487-7498 ◽  
Author(s):  
Sheng Wang ◽  
Richik N. Ghosh ◽  
Srikumar P. Chellappan

ABSTRACT Cells initiate proliferation in response to growth factor stimulation, but the biochemical mechanisms linking signals received at the cell surface receptors to the cell cycle regulatory molecules are not yet clear. In this study, we show that the signaling molecule Raf-1 can physically interact with Rb and p130 proteins in vitro and in vivo and that this interaction can be detected in mammalian cells without overexpressing any component. The binding of Raf-1 to Rb occurs subsequent to mitogen stimulation, and this interaction can be detected only in proliferating cells. Raf-1 can inactivate Rb function and can reverse Rb-mediated repression of E2F1 transcription and cell proliferation efficiently. The region of Raf-1 involved in Rb binding spanned residues 1 to 28 at the N terminus, and functional inactivation of Rb required a direct interaction. Serum stimulation of quiescent human fibroblast HSF8 cells led to a partial translocation of Raf-1 into the nucleus, where it colocalized with Rb. Further, Raf-1 was able to phosphorylate Rb in vitro quite efficiently. We believe that the physical interaction of Raf-1 with Rb is a vital step in the growth factor-mediated induction of cell proliferation and that Raf-1 acts as a direct link between cell surface signaling cascades and the cell cycle machinery.


2005 ◽  
Vol 25 (12) ◽  
pp. 4993-5010 ◽  
Author(s):  
Xiaoqi Liu ◽  
Chin-Yo Lin ◽  
Ming Lei ◽  
Shi Yan ◽  
Tianhua Zhou ◽  
...  

ABSTRACT Experiments from several different organisms have demonstrated that polo-like kinases are involved in many aspects of mitosis and cytokinesis. Here, we provide evidence to show that Plk1 associates with chaperonin-containing TCP1 complex (CCT) both in vitro and in vivo. Silencing of CCT by use of RNA interference (RNAi) in mammalian cells inhibits cell proliferation, decreases cell viability, causes cell cycle arrest with 4N DNA content, and leads to apoptosis. Depletion of CCT in well-synchronized HeLa cells causes cell cycle arrest at G2, as demonstrated by a low mitotic index and Cdc2 activity. Complete depletion of Plk1 in well-synchronized cells also leads to G2 block, suggesting that misfolded Plk1 might be responsible for the failure of CCT-depleted cells to enter mitosis. Moreover, partial depletion of CCT or Plk1 leads to mitotic arrest. Finally, the CCT-depleted cells reenter the cell cycle upon reintroduction of the purified constitutively active form of Plk1, indicating that Plk1 might be a CCT substrate.


Sign in / Sign up

Export Citation Format

Share Document