scholarly journals Alkaline phosphatase downregulation promotes lung adenocarcinoma metastasis via the c-Myc/RhoA axis

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhefeng Lou ◽  
Weiwei Lin ◽  
Huirong Zhao ◽  
Xueli Jiao ◽  
Cong Wang ◽  
...  

Abstract Background Lung adenocarcinoma (LUAD) metastasis significantly reduces patient survival; hence inhibiting the metastatic ability of lung cancer cells will greatly prolong patient survival. Alkaline phosphatase (ALPL), a homodimeric cell surface phosphohydrolase, is reported to play a controversial role in prostate cancer and ovarian cancer cell migration; however, the function of ALPL in LUAD and the related mechanisms remain unclear. Methods TCGA database was used to analysis the expression of ALPL, and further verification was performed in a cohort of 36 LUAD samples by qPCR and western blot. Soft-agar assay, transwell assay and lung metastasis assay were employed to detect the function of ALPL in LUAD progression. The qPCR, luciferase promoter reporter assay and western blot were used to clarify the molecular mechanisms of ALPL in promoting metastasis in LUAD. Results ALPL was downregulated in LUAD, and the disease-free survival rate of patients with low ALPL was significantly reduced. Further studies showed that overexpression of ALPL in LUAD cell lines did not significantly affect cell proliferation, but it did significantly attenuate lung metastasis in a mouse model. ALPL downregulation in LUAD led to a decrease in the amount of phosphorylated (p)-ERK. Because p-ERK promotes the classical c-Myc degradation pathway, the decrease in p-ERK led to the accumulation of c-Myc and therefore to an increase in RhoA transcription, which enhanced LUAD cell metastasis. Conclusion ALPL specially inhibits the metastasis of LUAD cells by affecting the p-ERK/c-Myc/RhoA axis, providing a theoretical basis for the targeted therapy of clinical LUAD.

2021 ◽  
Author(s):  
Zhefeng Lou ◽  
Weiwei Lin ◽  
Huirong Zhao ◽  
Xueli Jiao ◽  
Cong Wang ◽  
...  

Abstract Background: Lung adenocarcinoma (LUAD) metastasis significantly reduces patient survival; hence inhibiting the metastatic ability of lung cancer cells will greatly prolong patient survival. Alkaline phosphatase (ALPL), a homodimeric cell surface phosphohydrolase, is reported to play a controversial role in prostate cancer and ovarian cancer cell migration; however, the function of ALPL in LUAD and the related mechanisms remain unclear.Methods: TCGA database was used to analysis the expression of ALPL, and further verification was performed in a cohort of 36 LUAD samples by qPCR and western blot. Soft-agar assay, transwell assay and lung metastasis assay were employed to detect the function of ALPL in LUAD progression. The qPCR, luciferase promoter reporter assay and western blot were used to clarify the molecular mechanisms of ALPL in promoting metastasis in LUAD.Results: ALPL was downregulated in LUAD, and the disease-free survival rate of patients with low ALPL was significantly reduced. Further studies showed that overexpression of ALPL in LUAD cell lines did not significantly affect cell proliferation, but it did significantly attenuate lung metastasis in a mouse model. ALPL downregulation in LUAD led to a decrease in the amount of phosphorylated (p)-ERK. Because p-ERK promotes the classical c-Myc degradation pathway, the decrease in p-ERK led to the accumulation of c-Myc and therefore to an increase in RhoA transcription, which enhanced LUAD cell metastasis.Conclusion: ALPL specially inhibits the metastasis of LUAD cells by affecting the p-ERK/c-Myc/RhoA axis, providing a theoretical basis for the targeted therapy of clinical LUAD.


Author(s):  
Sheng Li ◽  
Guoren Zhou ◽  
Wei Liu ◽  
Jinjun Ye ◽  
Fangliang Yuan ◽  
...  

Curcumol (Cur), isolated from the Traditional Chinese Medical plant Rhizoma Curcumae, is the bioactive component of sesquiterpene reported to possess anti-tumor activity. However, its bioactivity and mechanisms against lung adenocarcinoma are still unclear. We investigated its effect on lung adenocarcinoma and elucidated its underlying molecular mechanisms. <I>In vitro</I>, Cur effectively suppressed proliferation, migration and invasion of lung adenocarcinoma cells A549 and H460, which were associated with the altered expressions of signaling molecules, including p-AKT, p-PI3K, p-LRP5/6, AXIN, APC, GSK3 &szlig; and p- &szlig;-catenin, matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, Cur significantly induced cell apoptosis of A549 and H460 by promoting the expression of Bax, caspase-3 and caspase-9 and suppressing the expression of Bcl-2, and arrested the cell cycle at the G0/G1 phase by lowering the levels of cyclin D1, CDK1 and CDK4. In vivo experiment revealed that Cur could inhibit lung tumor growth and lung metastasis, which were consistent with these in vitro results. In xenograft model mice, Cur strongly decreased tumor weight and tumor volume, which may were related to the down-regulation of p-AKT and p-PI3K by immunofluorescence analysis. In addition, lung metastasis model experiment suggested that Cur dramatically decreased the ratio of lung/total weight, tumor metastatic nodules, and the expressions of MMP-2 and MMP-9 in lung tissues compared with the control. Overall, these data suggested that the inhibitory activity of Cur on lung adenocarcinoma via the inactivation of PI3K/Akt and Wnt/ &szlig;-catenin pathways, at least in part, indicating that curcumol may be a potential anti-tumor agent for lung adenocarcinoma therapy.


2015 ◽  
Vol 29 (3) ◽  
pp. 460-472 ◽  
Author(s):  
Weipeng Xiong ◽  
Aaron J. Knox ◽  
Mei Xu ◽  
Katja Kiseljak-Vassiliades ◽  
Sean P. Colgan ◽  
...  

Abstract The genetic and molecular mechanisms that initiate and maintain pituitary tumorigenesis are poorly understood. Nonfunctioning tumors of the gonadotrope lineage represent 35% of all tumors; are usually macroadenomas, often resulting in hypopituitarism; and have no medical treatments. Using expression microarrays combined with whole-genome copy number screens on individual human tumors, we identified the mammalian sterile-20-like kinase (MST4) transcript, which was amplified within chromosome Xq26.2 in one tumor and up-regulated in all gonadotrope tumor samples. MST4 mRNA and protein were consistently overexpressed in human tumors compared with normal pituitaries. To mimic the pituitary tumor microenvironment, a hypoxia model using LβT2 murine gonadotrope cells was created to examine the functional role of the kinase. During long-term hypoxia, MST4 expression increased colony formation in a soft agar assay and rates of cell proliferation by activating p38 MAPK and AKT. Under short-term severe hypoxic stress, MST4 decreased the rates of apoptosis via p38 MAPK, AKT, hypoxia-inducible factor-1, and its cell-specific downstream targets. Analysis of MST4 mutants confirmed the importance of the kinase sequence but not the regulatory C terminus for its functional effects. Together these data identify the MST4 kinase as a novel candidate to mediate human pituitary tumorigenesis in a hypoxic environment and position it as a potential therapeutic target.


2018 ◽  
Vol 18 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Aikebaier Maimaiti ◽  
Amier Aili ◽  
Hureshitanmu Kuerban ◽  
Xuejun Li

Aims: Gallic acid (GA) is generally distributed in a variety of plants and foods, and possesses cell growth-inhibiting activities in cancer cell lines. In the present study, the impact of GA on cell viability, apoptosis induction and possible molecular mechanisms in cultured A549 lung carcinoma cells was investigated. Methods: In vitro experiments showed that treating A549 cells with various concentrations of GA inhibited cell viability and induced apoptosis in a dose-dependent manner. In order to understand the mechanism by which GA inhibits cell viability, comparative proteomic analysis was applied. The changed proteins were identified by Western blot and siRNA methods. Results: Two-dimensional electrophoresis revealed changes that occurred to the cells when treated with or without GA. Four up-regulated protein spots were clearly identified as malate dehydrogenase (MDH), voltagedependent, anion-selective channel protein 1(VDAC1), calreticulin (CRT) and brain acid soluble protein 1(BASP1). VDAC1 in A549 cells was reconfirmed by western blot. Transfection with VDAC1 siRNA significantly increased cell viability after the treatment of GA. Further investigation showed that GA down regulated PI3K/Akt signaling pathways. These data strongly suggest that up-regulation of VDAC1 by GA may play an important role in GA-induced, inhibitory effects on A549 cell viability.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 795
Author(s):  
Lukas Gorecki ◽  
Martin Andrs ◽  
Jan Korabecny

Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra‑S or G2/M checkpoints has also been extensively pursued. This review focuses on clinical candidates that target the kinases involved in intra‑S and G2/M checkpoints, namely, ATR, CHK1, and WEE1 inhibitors. It provides insight into their current status and future perspectives for anticancer treatment. Overall, even though CHK1 inhibitors are still far from clinical establishment, promising accomplishments with ATR and WEE1 inhibitors in phase II trials present a positive outlook for patient survival.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenjie Chen ◽  
Wen Li ◽  
Zhenkun Liu ◽  
Guangzhi Ma ◽  
Yunfu Deng ◽  
...  

AbstractTo identify the prognostic biomarker of the competitive endogenous RNA (ceRNA) and explore the tumor infiltrating immune cells (TIICs) which might be the potential prognostic factors in lung adenocarcinoma. In addition, we also try to explain the crosstalk between the ceRNA and TIICs to explore the molecular mechanisms involved in lung adenocarcinoma. The transcriptome data of lung adenocarcinoma were obtained from The Cancer Genome Atlas (TCGA) database, and the hypergeometric correlation of the differently expressed miRNA-lncRNA and miRNA-mRNA were analyzed based on the starBase. In addition, the Kaplan–Meier survival and Cox regression model analysis were used to identify the prognostic ceRNA network and TIICs. Correlation analysis was performed to analysis the correlation between the ceRNA network and TIICs. In the differently expressed RNAs between tumor and normal tissue, a total of 190 miRNAs, 224 lncRNAs and 3024 mRNAs were detected, and the constructed ceRNA network contained 5 lncRNAs, 92 mRNAs and 10 miRNAs. Then, six prognostic RNAs (FKBP3, GPI, LOXL2, IL22RA1, GPR37, and has-miR-148a-3p) were viewed as the key members for constructing the prognostic prediction model in the ceRNA network, and three kinds of TIICs (Monocytes, Macrophages M1, activated mast cells) were identified to be significantly related with the prognosis in lung adenocarcinoma. Correlation analysis suggested that the FKBP3 was associated with Monocytes and Macrophages M1, and the GPI was obviously related with Monocytes and Macrophages M1. Besides, the LOXL2 was associated with Monocytes and Activated mast cells, and the IL22RA1 was significantly associated with Monocytes and Macrophages M1, while the GPR37 and Macrophages M1 was closely related. The constructed ceRNA network and identified Monocytes, Macrophages M1 and activated Mast cells are all prognostic factors for lung adenocarcinoma. Moreover, the crosstalk between the ceRNA network and TIICs might be a potential molecular mechanism involved.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 710
Author(s):  
Francesco Petrella ◽  
Monica Casiraghi ◽  
Davide Radice ◽  
Andrea Cara ◽  
Gabriele Maffeis ◽  
...  

Background: The ratio of hemoglobin to red cell distribution width (HRR) has been described as an effective prognostic factor in several types of cancer. The aim of this study was to investigate the prognostic role of preoperative HRR in resected-lung-adenocarcinoma patients. Methods: We enrolled 342 consecutive patients. Age, sex, surgical resection, adjuvant treatments, pathological stage, preoperative hemoglobin, red cell distribution width, and their ratio were recorded for each patient. Results: Mean age was 66 years (SD: 9.0). There were 163 females (47.1%); 169 patients (49.4%) had tumors at stage I, 71 (20.8%) at stage II, and 102 (29.8%) at stage III. In total, 318 patients (93.0%) underwent lobectomy, and 24 (7.0%) pneumonectomy. Disease-free survival multivariable analysis disclosed an increased hazard ratio (HR) of relapse for preoperative HRR lower than 1.01 (HR = 2.20, 95%CI: (1.30–3.72), p = 0.004), as well as for N1 single-node (HR = 2.55, 95%CI: (1.33–4.90), p = 0.005) and multiple-level lymph node involvement compared to N0 for both N1 (HR = 9.16, 95%CI:(3.65–23.0), p < 0.001) and N2 (HR = 10.5, 95%CI:(3.44–32.2, p < 0.001). Conclusion: Pre-operative HRR is an effective prognostic factor of disease-free survival in resected-lung-adenocarcinoma patients, together with the level of pathologic node involvement.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoqing Fan ◽  
Haoran Yang ◽  
Chenggang Zhao ◽  
Lizhu Hu ◽  
Delong Wang ◽  
...  

Abstract Background A large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on tumor biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms. Methods The effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., Cell Counting Kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The acyl-biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs. Results In this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. Conclusions In conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3442
Author(s):  
Yu-Chun Lin ◽  
Wen-Yen Huang ◽  
Tsai-Yu Lee ◽  
Yi-Ming Chang ◽  
Su-Feng Chen ◽  
...  

Despite recent advances, treatment for head and neck squamous cell carcinoma (HNSCC) has limited efficacy in preventing tumor progression. We confirmed previously that carcinoma-associated fibroblasts (CAF)-induced interleukin-33 (IL-33) contributed to cancer progression. However, the molecular mechanisms underlying the complex communication network of the tumor microenvironment merited further evaluation. To simulate the IL-33-induced autocrine signaling, stable clones of IL-33-overexpressing HNSCC cells were established. Besides well-established IL-33/ST2 and SDF1/CXCR4 (stromal-derived factor 1/C-X-C motif chemokine receptor 4) signaling, the CAF-induced IL-33 upregulated CXCR4 via cancer cell induction of IL-33 self-production. The IL-33-enhanced-CXCR4 regulatory circuit involves SDF1/CXCR4 signaling activation and modulates tumor behavior. An in vivo study confirmed the functional role of IL-33/CXCR4 in tumor initiation and metastasis. The CXCR4 and/or IL-33 blockade reduced HNSCC cell aggressiveness, with attenuated invasions and metastases. Immunohistochemistry confirmed that IL-33 and CXCR4 expression correlated significantly with disease-free survival and IL-33-CXCR4 co-expression predicted a poor outcome. Besides paracrine signaling, the CAF-induced IL-33 reciprocally enhanced the autocrine cancer-cell self-production of IL-33 and the corresponding CXCR4 upregulation, leading to the activation of SDF1/CXCR4 signaling subsequent to cancer progression. Thus, targeting the IL-33-enhanced-CXCR4 regulatory circuit attenuates tumor aggressiveness and provides a potential therapeutic option for improving the prognosis in HNSCC patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Min Deng ◽  
Shao-Hua Li ◽  
Xu Fu ◽  
Xiao-Peng Yan ◽  
Jun Chen ◽  
...  

Abstract Background Programmed death- ligand 1 (PD-L1) seems to be associated with the immune escape of tumors, and immunotherapy may be a favorable treatment for PD-L1-positive patients. We evaluated intrahepatic cholangiocarcinoma (ICC) specimens for their expression of PD-L1, infiltration of CD8+ T cells, and the relationship between these factors and patient survival. Methods In total, 69 resections of ICC were stained by immunohistochemistry for PD-L1, programmed death factor-1 (PD-1), and CD8+ T cells. CD8+ T-cell densities were analyzed both within tumors and at the tumor-stromal interface. Patient survival was predicted based on the PD-L1 status and CD8+ T-cell density. Results The expression rate of PD-L1 was 12% in cancer cells and 51% in interstitial cells. The expression rate of PD-1 was 30%, and the number of CD8+ T-cells increased with the increase of PD-L1 expression (p < 0.05). The expression of PD-L1 in the tumor was correlated with poor overall survival(OS) (p = 0.004), and the number of tumor and interstitial CD8+ T-cells was correlated with poor OS and disease-free survival (DFS) (All p < 0.001). Conclusions The expression of PD-L1 in the tumor is related to poor OS, and the number of tumor or interstitial CD8+ T-cells is related to poor OS and DFS. For patients who lose their chance of surgery, PD-L1 immunosuppressive therapy may be the focus of future research as a potential treatment.


Sign in / Sign up

Export Citation Format

Share Document