scholarly journals TNF Alpha-Induced SOX2 Expression Promotes Hepatic Steatois in Diet-Induced Obesity Model

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A60-A60
Author(s):  
Chen Shen ◽  
Jin Hong Chen ◽  
Haram Oh ◽  
Ji Hyun Park

Abstract Diet-induced obesity can cause metabolic or inflammatory damage on liver. Nonalcoholic fatty liver disease (NAFLD) begins with the fat accumulation in hepatocyte, but can lead to hepatocellular carcinoma (HCC). Sex-determining region Y-box 2 (SOX2) is a critical transcription factor involving regeneration and pluripotency. The expression level of Sox2 is correlated with progression of HCC, and anti-inflammatory effects of Sox2 in mesenchymal stem cells have been found. However, the expression of Sox2 by inflammatory cytokines in hepatocyte in NAFLD or the role of SOX2 in fat accumulation has been rarely reported. Here, we found that high-fat diet feeding, with or without high fructose in drinking water, significantly upregulated SOX2 in the livers of mice. In vitro, treatment with free fatty acids (FFAs) and fructose increased SOX2 expression in FL83B cells compared with the vehicle-treated group. Furthermore, overexpression or knockdown of SOX2 in FL83B cells promoted or suppressed, respectively, triglyceride synthesis and lipid accumulation after FFAs stimulation. The expression levels of several lipogenesis-related molecules were found to be altered by SOX2 expression. In addition, among several cytokines, only the treatment of tumor necrosis factor-alpha (TNFα) increased the SOX2 expression compared with the vehicle-treated control. Further, upregulation of (TNFα) by FFA/fructose was observed, and TNFα and FFA/fructose induced SOX2 expression was abolished by pretreatment of a TNFα inhibitor. Collectively, our findings suggest that TNFα-SOX2 signaling pathway in hepatocyte may be one of targets for early prevention of the development of NAFLD.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jai Sun Lee ◽  
Dae Won Jun ◽  
Eun Kyung Kim ◽  
Hye Joon Jeon ◽  
Ho Hyun Nam ◽  
...  

Background. We used high-fat (HF), high-fructose (HFr), and combination diets to create a dietary animal model of nonalcoholic fatty liver disease (NAFLD). Comparison of both clinical phenotypes has not been well defined. The purpose of this study was to compare histologic and metabolic characteristics between diets in an animal model of NAFLD.Methods. NAFLD was induced in rats by feeding them HF, HFr, and combination (HF + HFr) diets for 20 weeks. The degree of intrahepatic fat accumulation, inflammation, and oxidative stress was evaluated. Metabolic derangements were assessed by the oral glucose tolerance test and the intrahepatic insulin signal pathway.Results. Body weight gain and intrahepatic fat accumulation were more prominent in the HF feeding group than in the HFr group. The expressions of NOX-4 and TLR-4 were higher in the HF and HFr combination groups than in the HF-only group. Other intrahepatic inflammatory markers, MCP-1, TNF-α, and endoplasmic reticulum stress markers, were the highest in the HF + HFr combination group. Although intrahepatic fat deposition was less prominent in the HFr diet model, intrahepatic inflammation was noted.Conclusions. Intrahepatic inflammation and metabolic derangements were more prominent in the HF and HFr combination model than in the HF monodiet model.


2019 ◽  
Vol 316 (2) ◽  
pp. E239-E250 ◽  
Author(s):  
Shigeki Masuda ◽  
Yuya Fujishima ◽  
Norikazu Maeda ◽  
Yuri Tsugawa-Shimizu ◽  
Yuto Nakamura ◽  
...  

Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is an enzyme that specifically cleaves GPI anchors. Previous human studies suggested the relationship of GPI-PLD to insulin resistance, type 1 and type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD). However, the biological roles of GPI-PLD have not been elucidated. Here, we hypothesized that GPI-PLD impacted on lipid and glucose metabolism, especially in the liver. GPI-PLD mRNA was most highly expressed in the liver, and the hepatic mRNA level and circulating concentration of GPI-PLD were significantly augmented in diabetic mice. To investigate in vivo functions of GPI-PLD, we generated GPI-PLD knockout (GP-KO) mice. Mice lacking GPI-PLD exhibited the amelioration of glucose intolerance and hepatic steatosis under high-fat and high-sucrose diet. Furthermore, diacylglycerol (DAG) content was significantly decreased, and PKCε activity was suppressed in the livers of GP-KO mice. In vitro knockdown and overexpression experiments of GPI-PLD using rat primary hepatocytes showed the GPI-PLD-dependent regulation of intracellular DAG content. Finally, serum GPI-PLD levels were strongly and independently associated with serum alanine transaminase (R = 0.37, P = 0.0006) and triglyceride (R = 0.34, P = 0.001) levels in male subjects with metabolic syndrome. In conclusion, upregulation of hepatic GPI-PLD in diabetic conditions leads to DAG accumulation in the liver by shedding GPI anchors intracellularly, which may play a causal role in impaired hepatic insulin signaling and the progression of NAFLD.


2021 ◽  
pp. 026988112110324
Author(s):  
Peng Li ◽  
Fucheng Zhang ◽  
Yajuan Li ◽  
Cai Zhang ◽  
Zhiyou Yang ◽  
...  

Background: Microglia activation-induced neuroinflammation may contribute to the etiology of depression. Podocarpus nagi containing high concentration of isoginkgetin could effectively treat mental diseases in ancient times. However, the therapeutic role, peculiarly in the brain–immune modulation in depression is still unclear. This study aimed to determine effects of isoginkgetin on lipopolysaccharide (LPS)-induced depression-like changes. Furthermore, its modulation on the p38/nuclear factor-kappa B (NF-κB) pathway in LPS-activated microglia was evaluated. Methods: Adult Kunming mice were intraperitoneally injected vehicle or isoginkgetin (4 mg/kg) daily for 14 days before saline or LPS (0.83 mg/kg) administration. Depression-like behavior, neurotransmitter levels, and markers of neuroinflammation were determined. Isoginkgetin effect on LPS-induced microglial activation was then assessed in BV2 cells. Finally, conditioned medium (CM) derived from isoginkgetin-treated BV2 cells was co-cultured with SH-SY5Y cells for 24 h. Cell viability and apoptosis were evaluated. Results: LPS significantly induced helplessness and anxiety, which were associated with decreased 5-HT, noradrenaline, and dopamine concentrations. Meanwhile, LPS increased microglia M1 hallmark Iba1 expression and serum interleukin (IL)-1β concentration. These changes were attenuated by isoginkgetin treatment. In vitro, isoginkgetin markedly suppressed the production of IL-1β, IL-6, tumor necrosis factor-alpha, cyclooxygenase-2, inducible nitric oxide, and reactive oxygen species, which are released from LPS-stimulated BV2 cells. More interestingly, CM from isoginkgetin-treated BV2 cells significantly alleviated SH-SY5Y cell apoptosis and restored cell viability compared to LPS-treated group through the inhibition of p38/NF-κB signaling pathway. Conclusion: These data demonstrate that isoginkgetin is an effective therapeutic agent for depression-like behaviors and neuropathological changes via potent anti-inflammatory property.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1986
Author(s):  
Suping Han ◽  
Yafan Yang ◽  
Yanan Lu ◽  
Jielong Guo ◽  
Xue Han ◽  
...  

(1) Background: Brown adipose tissue (BAT) burns energy to produce heat. Cyanidin-3-O-glucoside (C3G) can then enhance the thermogenic ability of BAT in vivo. However, the mechanism by which C3G regulates Ucp1 protein expression remains unclear. (2) Methods: In this study, C3H10T12 brown adipose cells and db/db mice and mice with high-fat, high-fructose, diet-induced obesity were used as the model to explore the effect of C3G on the expression of the Ucp1 gene. Furthermore, the 293T cell line was used for an in vitro cell transgene, a double luciferase reporting system, and yeast single hybridization to explore the mechanism of C3G in regulating Ucp1 protein. (3) Results: we identified that, under the influence of C3G, Prdm16 directly binds to the −500 to −150 bp promoter region of Ucp1 to activate its transcription and, thus, facilitate BAT programming. (4) Conclusions: This study clarified the mechanism by which C3G regulates the expression of the Ucp1 gene of brown fat to a certain extent.


2019 ◽  
Vol 22 (3) ◽  
pp. 194-200 ◽  
Author(s):  
Xiang Liu ◽  
Zhi-Hong Xie ◽  
Chen-Yuan Liu ◽  
Ying Zhang

Background: Chinese herbal monomer hairy Calycosin is a flavonoid extracted from Radix astragali. Aims and Scope: The aim of the research was to investigate the effect and mechanism of Hairy Calycosin on Non-Alcoholic Fatty Liver Dieases (NAFLD) in rats. Materials and Methods: 60 rats were randomly divided into 6 groups, then NAFLD rat models were prepared and treated with different doses of Hairy Calycosin (0.5, 1.0, 2.0 mg/kg) or Kathyle relatively. Results: Both 1.0 mg/kg and 2.0 mg/kg Hairy Calycosin treatment could significantly increase the serum Superoxide Dismutase (SOD) content of the model rats and reduce the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), Free Fatty Acid (FFA), IL-6, tumor necrosis factor-alpha (TNF-α) and liver homogenate malondialdehyde (MDA), while 2.0 mg/kg Hairy Calycosin can down-regulate liver tissue cytochrome p450 2E1 (CYP2E1). In the electron microscope, compared with the model control group, the mitochondrial swelling in the hepatocytes of Hairy Calycosin (1.0, 2.0 mg/kg) treatment group was significantly reduced, the ridge on the inner membrane of mitochondria increased, and the lipid droplets became much smaller. Conclusion: Hairy Calycosin can effectively control the lipid peroxidation in liver tissues of rats with NAFLD, and reduce the levels of serum TNF-α, IL-6, MDA and FFA, effectively improve the steatosis and inflammation of liver tissue, and down-regulate the expression of CYP2E1, inhibit apoptosis of hepatocytes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Dasol Kim ◽  
Hui-Yun Hwang ◽  
Eun Sun Ji ◽  
Jin Young Kim ◽  
Jong Shin Yoo ◽  
...  

AbstractDisorders of autophagy, a key regulator of cellular homeostasis, cause a number of human diseases. Due to the role of autophagy in metabolic dysregulation, there is a need to identify autophagy regulators as therapeutic targets. To address this need, we conducted an autophagy phenotype-based screen and identified the natural compound kaempferide (Kaem) as an autophagy enhancer. Kaem promoted autophagy through translocation of transcription factor EB (TFEB) without MTOR perturbation, suggesting it is safe for administration. Moreover, Kaem accelerated lipid droplet degradation in a lysosomal activity-dependent manner in vitro and ameliorated metabolic dysregulation in a diet-induced obesity mouse model. To elucidate the mechanism underlying Kaem’s biological activity, the target protein was identified via combined drug affinity responsive target stability and LC–MS/MS analyses. Kaem directly interacted with the mitochondrial elongation factor TUFM, and TUFM absence reversed Kaem-induced autophagy and lipid degradation. Kaem also induced mitochondrial reactive oxygen species (mtROS) to sequentially promote lysosomal Ca2+ efflux, TFEB translocation and autophagy induction, suggesting a role of TUFM in mtROS regulation. Collectively, these results demonstrate that Kaem is a potential therapeutic candidate/chemical tool for treating metabolic dysregulation and reveal a role for TUFM in autophagy for metabolic regulation with lipid overload.


Author(s):  
Joon M. Jung ◽  
Hae K. Yoon ◽  
Chang J. Jung ◽  
Soo Y. Jo ◽  
Sang G. Hwang ◽  
...  

Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing–related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant ( P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazim Husain ◽  
Domenico Coppola ◽  
Chung S. Yang ◽  
Mokenge P. Malafa

AbstractThe activation and growth of tumour-initiating cells with stem-like properties in distant organs characterize colorectal cancer (CRC) growth and metastasis. Thus, inhibition of colon cancer stem cell (CCSC) growth holds promise for CRC growth and metastasis prevention. We and others have shown that farnesyl dimethyl chromanol (FDMC) inhibits cancer cell growth and induces apoptosis in vitro and in vivo. We provide the first demonstration that FDMC inhibits CCSC viability, survival, self-renewal (spheroid formation), pluripotent transcription factors (Nanog, Oct4, and Sox2) expression, organoids formation, and Wnt/β-catenin signalling, as evidenced by comparisons with vehicle-treated controls. In addition, FDMC inhibits CCSC migration, invasion, inflammation (NF-kB), angiogenesis (vascular endothelial growth factor, VEGF), and metastasis (MMP9), which are critical tumour metastasis processes. Moreover, FDMC induced apoptosis (TUNEL, Annexin V, cleaved caspase 3, and cleaved PARP) in CCSCs and CCSC-derived spheroids and organoids. Finally, in an orthotopic (cecum-injected CCSCs) xenograft metastasis model, we show that FDMC significantly retards CCSC-derived tumour growth (Ki-67); inhibits inflammation (NF-kB), angiogenesis (VEGF and CD31), and β-catenin signalling; and induces apoptosis (cleaved PARP) in tumour tissues and inhibits liver metastasis. In summary, our results demonstrate that FDMC inhibits the CCSC metastatic phenotype and thereby supports investigating its ability to prevent CRC metastases.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Pei-Yao Liu ◽  
Cheng-Cheung Chen ◽  
Chia-Ying Chin ◽  
Te-Jung Liu ◽  
Wen-Chiuan Tsai ◽  
...  

AbstractIn obese adults, nonalcoholic fatty liver disease (NAFLD) is accompanied by multiple metabolic dysfunctions. Although upregulated hepatic fatty acid synthesis has been identified as a crucial mediator of NAFLD development, the underlying mechanisms are yet to be elucidated. In this study, we reported upregulated expression of gene related to anergy in lymphocytes (GRAIL) in the livers of humans and mice with hepatic steatosis. Grail ablation markedly alleviated the high-fat diet-induced hepatic fat accumulation and expression of genes related to the lipid metabolism, in vitro and in vivo. Conversely, overexpression of GRAIL exacerbated lipid accumulation and enhanced the expression of lipid metabolic genes in mice and liver cells. Our results demonstrated that Grail regulated the lipid accumulation in hepatic steatosis via interaction with sirtuin 1. Thus, Grail poses as a significant molecular regulator in the development of NAFLD.


Sign in / Sign up

Export Citation Format

Share Document