Damage Function for the Mechanical Properties of Steels

1977 ◽  
Vol 36 (3) ◽  
pp. 336-346 ◽  
Author(s):  
A. Alberman ◽  
J. P. Genthon ◽  
L. Salon ◽  
G. Allegraud
Author(s):  
Ernesto Heredia-Zavoni ◽  
Antonio Zeballos ◽  
Roberto Montes-Iturrizaga ◽  
Luis Esteva

Abstract This paper discusses the estimation of probability distributions of damage using response records from instrumented buildings subjected to seismic excitations. The objective of the paper is to show how the information on the evolution of the mechanical properties of a system can be used to assess the state of cumulative damage. This implies expressing damage on the structural members in terms of its influence on the residual mechanical properties of the system. The information on the inelastic behavior from response records is used in a bayesian formulation along with a damage function to update prior probability distributions of damage. The damage function models the hysteretic cycles of inelastic response in terms of an initial damage and of the displacement amplitudes of the response cycles. It describes the evolution of the secant stiffness through the cycles of inelastic response as a function of cumulative damage and displacement amplitudes. The updating of probability distributions of damage for single degree of freedom systems is presented first. Extensions to the case of non-linear multi-degree of freedom systems are discussed next. Examples of reinforced concrete frames are given for illustrative purposes.


2017 ◽  
Vol 14 (132) ◽  
pp. 20170102 ◽  
Author(s):  
Piyusha S. Gade ◽  
Keewon Lee ◽  
Blaise N. Pfaff ◽  
Yadong Wang ◽  
Anne M. Robertson

A fundamental mechanism of in situ tissue regeneration from biodegradable synthetic acellular vascular grafts is the effective interplay between graft degradation, erosion and the production of extracellular matrix. In order to understand this crucial process of graft erosion and degradation, we conducted an in vitro investigation of grafts ( n = 4 at days 1, 4, 7, 10 each) exposed to enzymatic degradation. Herein, we provide constitutive relationships for mass loss and mechanical properties based on much-needed experimental data. Furthermore, we formulate a mathematical model to provide a physics-based framework for understanding graft erosion. A novel finding is that despite their porous nature, grafts lost mass exponentially via surface erosion demonstrating a 20% reduction in outer diameter and no significant change in apparent density. A diffusion based, concentration gradient-driven mechanistic model of mass loss through surface erosion was introduced which can be extended to an in vivo setting through the use of two degradation parameters. Furthermore, notably, mechanical properties of degrading grafts did not scale with mass loss. Thus, we introduced a damage function scaling a neo-Hookean model to describe mechanical properties of the degrading graft; a refinement to existing mass-dependent growth and remodelling (G&R) models. This framework can be used to improve accuracy of well-established G&R theories in biomechanics; tools that predict evolving structure–function relationships of neotissues and guide graft design.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Author(s):  
H.-J. Kleebe ◽  
J.S. Vetrano ◽  
J. Bruley ◽  
M. Rühle

It is expected that silicon nitride based ceramics will be used as high-temperature structural components. Though much progress has been made in both processing techniques and microstructural control, the mechanical properties required have not yet been achieved. It is thought that the high-temperature mechanical properties of Si3N4 are limited largely by the secondary glassy phases present at triple points. These are due to various oxide additives used to promote liquid-phase sintering. Therefore, many attempts have been performed to crystallize these second phase glassy pockets in order to improve high temperature properties. In addition to the glassy or crystallized second phases at triple points a thin amorphous film exists at two-grain junctions. This thin film is found even in silicon nitride formed by hot isostatic pressing (HIPing) without additives. It has been proposed by Clarke that an amorphous film can exist at two-grain junctions with an equilibrium thickness.


Author(s):  
E. Sukedai ◽  
H. Mabuchi ◽  
H. Hashimoto ◽  
Y. Nakayama

In order to improve the mechanical properties of an intermetal1ic compound TiAl, a composite material of TiAl involving a second phase Ti2AIN was prepared by a new combustion reaction method. It is found that Ti2AIN (hexagonal structure) is a rod shape as shown in Fig.1 and its side surface is almost parallel to the basal plane, and this composite material has distinguished strength at elevated temperature and considerable toughness at room temperature comparing with TiAl single phase material. Since the property of the interface of composite materials has strong influences to their mechanical properties, the structure of the interface of intermetallic compound and nitride on the areas corresponding to 2, 3 and 4 as shown in Fig.1 was investigated using high resolution electron microscopy and image processing.


Author(s):  
M. A. McCoy

Transformation toughening by ZrO2 inclusions in various ceramic matrices has led to improved mechanical properties in these materials. Although the processing of these materials usually involves standard ceramic powder processing techniques, an alternate method of producing ZrO2 particles involves the devtrification of a ZrO2-containing glass. In this study the effects of glass composition (ZrO2 concentration) and heat treatment on the morphology of the crystallization products in a MgO•Al2•SiO2•ZrO2 glass was investigated.


Sign in / Sign up

Export Citation Format

Share Document