Physical exercise promotes brain remodeling by regulating epigenetics, neuroplasticity and neurotrophins

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Juan Liang ◽  
Huiqing Wang ◽  
Yan Zeng ◽  
Yi Qu ◽  
Qian Liu ◽  
...  

Abstract Exercise has been shown to have beneficial effects on brain functions in humans and animals. Exercise can improve memory and learning in age-related neurodegenerative diseases. In animal models, physical exercise regulates epigenetics, promotes synaptic plasticity and hippocampal neurogenesis, regulates the expression levels of neurotrophic factors, and improves cognitive function. Therefore, exercise is very important for brain rehabilitation and remodeling. The purpose of this review is to explore the mechanisms by which exercise exerts positive effects on brain function. This knowledge implies that physical exercise can be used as a non-drug therapy for neurological diseases.

2019 ◽  
Vol 21 (1) ◽  
pp. 120 ◽  
Author(s):  
Xiaolu Liu ◽  
Zhitao Feng ◽  
Lipeng Du ◽  
Yaguang Huang ◽  
Jinwen Ge ◽  
...  

Cerebral ischemia injury, the leading cause of morbidity and mortality worldwide, initiates sequential molecular and cellular pathologies that underlie ischemic encephalopathy (IE), such as ischemic stroke, Alzheimer disease (AD), Parkinson’s disease (PD), epilepsy, etc. Targeted therapeutic treatments are urgently needed to tackle the pathological processes implicated in these neurological diseases. Recently, accumulating studies demonstrate that microRNA-124 (miR-124), the most abundant miRNA in brain tissue, is aberrant in peripheral blood and brain vascular endothelial cells following cerebral ischemia. Importantly, miR-124 regulates a variety of pathophysiological processes that are involved in the pathogenesis of age-related IE. However, the role of miR-124 has not been systematically illustrated. Paradoxically, miR-124 exerts beneficial effects in the age-related IE via regulating autophagy, neuroinflammation, oxidative stress, neuronal excitability, neurodifferentiation, Aβ deposition, and hyperphosphorylation of tau protein, while it may play a dual role via regulating apoptosis and exerts detrimental effects on synaptic plasticity and axonal growth. In the present review, we thus focus on the paradoxical roles of miR-124 in age-related IE, as well as the underlying mechanisms. A great understanding of the effects of miR-124 on the hypoxic–ischemic brain will open new avenues for therapeutic approaches to protect against cerebral ischemia injury.


2015 ◽  
Vol 114 (10) ◽  
pp. 1542-1549 ◽  
Author(s):  
Barbara Shukitt-Hale ◽  
Donna F. Bielinski ◽  
Francis C. Lau ◽  
Lauren M. Willis ◽  
Amanda N. Carey ◽  
...  

AbstractPreviously, it has been shown that strawberry (SB) or blueberry (BB) supplementations, when fed to rats from 19 to 21 months of age, reverse age-related decrements in motor and cognitive performance. We have postulated that these effects may be the result of a number of positive benefits of the berry polyphenols, including decreased stress signalling, increased neurogenesis, and increased signals involved in learning and memory. Thus, the present study was carried out to examine these mechanisms in aged animals by administering a control, 2 % SB- or 2 % BB-supplemented diet to aged Fischer 344 rats for 8 weeks to ascertain their effectiveness in reversing age-related deficits in behavioural and neuronal function. The results showed that rats consuming the berry diets exhibited enhanced motor performance and improved cognition, specifically working memory. In addition, the rats supplemented with BB and SB diets showed increased hippocampal neurogenesis and expression of insulin-like growth factor 1, although the improvements in working memory performance could not solely be explained by these increases. The diverse polyphenolics in these berry fruits may have additional mechanisms of action that could account for their relative differences in efficacy.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Simona Daniele ◽  
Barbara Costa ◽  
Deborah Pietrobono ◽  
Chiara Giacomelli ◽  
Caterina Iofrida ◽  
...  

Epigenetic regulation may contribute to the beneficial effects of physical activity against age-related neurodegeneration. For example, epigenetic alterations of the gene encoding forα-synuclein (SNCA) have been widely explored in both brain and peripheral tissues of Parkinson’s disease samples. However, no data are currently available about the effects of physical exercise onSNCAepigenetic regulation in ageing healthy subjects. The present paper explored whether, in healthy individuals, age and physical activity are related to blood intron1-SNCA(SNCAI1) methylation, as well as further parameters linked to such epigenetic modification (total, oligomericα-synuclein and DNA methyltransferase concentrations in the blood). Here, theSNCAI1methylation status increased with ageing, and consistent with this result, lowα-synuclein levels were found in the blood. The direct relationship betweenSNCAI1methylation andα-synuclein levels was observed in samples characterized by bloodα-synuclein concentrations of 76.3 ng/mg protein or lower (confidence interval (CI) = 95%). In this selected population, higher physical activity reduced the total and oligomericα-synuclein levels. Taken together, our data shed light on ageing- and physical exercise-induced changes on theSNCAmethylation status and protein levels ofα-synuclein.


Author(s):  
Rui S Rodrigues ◽  
Joao B. Moreira ◽  
Ana M. Sebastião ◽  
Carlos P. Fitzsimons ◽  
Sara Xapelli

Adult neural stem/progenitor cells (NSPC) are present in specialized niches of the mammalian brain and their proliferative and differentiative potential is modulated by a myriad of factors. Recent evidence sheds light on the interaction between cannabinoids and neurotrophic factors underlying a major regulative force of adult hippocampal neurogenesis, with important effects upon cognitive plasticity and mood flexibility. Herein, we aimed at evaluating the actions of cannabinoid type 2 receptor (CB2R) together with exercise upon hippocampal neurogenesis and whether this has significant behavioral implications. Our data suggests a participation of CB2Rs in fine-tuning the actions of physical exercise upon adult hippocampal neurogenesis. Specifically, CB2R ligands as well as exercise-regulated neurotrophic factors promote an acceleration in the differentiation of progenitor cells accompanied by an increase in the number of mature neurons in vitro. Moreover, preliminary results show that CB2Rs play an impactful role in controlling cognitive and depressive-like behavior. This is particularly important because brain physiology and mental health are known to be greatly affected by physical exercise, with adult neurogenesis playing a significant role in this process. Ultimately, this work will contribute to unravel the mechanisms behind the actions of cannabinoids and exercise in the brain and to develop strategies utilizing CB2Rs and physical exercise to boost neural stem cell capacity and treat several brain disorders. Acknowledgements: Supported by Fundação para a Ciência e a Tecnologia (FCT), projects SFRH/BD/129710/2017 and IF/01227/2015. No potential conflict of interest.


Author(s):  
Dewan Md. Sumsuzzman ◽  
Yunho Jin ◽  
Jeonghyun Choi ◽  
Sang-Rae Lee ◽  
Yonggeun Hong

Irisin, a skeletal muscle-secreted myokine, produced in response to physical exercise, has protective functions in both the central and the peripheral nervous systems, including the regulation of brain-derived neurotrophic factors and modification of telomere length. Such beneficial effects may inhibit or delay the emergence of neurodegenerative diseases, including Alzheimer’s disease (AD). This review is based on the hypothesis that irisin produced by physical exercise helps control AD progression. Herein, we describe the physiology of irisin and its potential role in delaying or preventing AD. Although current and ongoing studies on irisin show promising results, further research is required to clarify its potential as a meaningful therapeutic target for treating human diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ramu Manjula ◽  
Kumari Anuja ◽  
Francisco J. Alcain

Sirtuins are NAD+ dependent histone deacetylases (HDAC) that play a pivotal role in neuroprotection and cellular senescence. SIRT1-7 are different homologs from sirtuins. They play a prominent role in many aspects of physiology and regulate crucial proteins. Modulation of sirtuins can thus be utilized as a therapeutic target for metabolic disorders. Neurological diseases have distinct clinical manifestations but are mainly age-associated and due to loss of protein homeostasis. Sirtuins mediate several life extension pathways and brain functions that may allow therapeutic intervention for age-related diseases. There is compelling evidence to support the fact that SIRT1 and SIRT2 are shuttled between the nucleus and cytoplasm and perform context-dependent functions in neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). In this review, we highlight the regulation of SIRT1 and SIRT2 in various neurological diseases. This study explores the various modulators that regulate the activity of SIRT1 and SIRT2, which may further assist in the treatment of neurodegenerative disease. Moreover, we analyze the structure and function of various small molecules that have potential significance in modulating sirtuins, as well as the technologies that advance the targeted therapy of neurodegenerative disease.


2020 ◽  
Vol 27 ◽  
Author(s):  
Alessandra Della Vecchia ◽  
Federico Mucci ◽  
Andrea Pozza ◽  
Donatella Marazziti

Background: Air ions (AIs) are clusters of ionized particles present in the atmosphere and carrying an electrical charge of negative or positive polarity. Past speculations suggested that exposure to positive air ions may be harmful, while exposure to negative air ions (NAIs) may be associated with beneficial health effects. Increasing attention has been directed towards investigating the potential effect of NAIs on human brain activities since initial observations of their beneficial effects on some cognitive processes and mood. Aims: Given the paucity and scattered literature, the aim of our paper is at reviewing available studies on potential positive effects of NAIs exposure on cognitive performances and depression. Discussion: The review of the literature seems to confirm effects of NAIs on several brain functions. Indeed, a significant association between NAIs exposure and both wellbeing and high cognitive performances has been described. However, the exposure to high concentrations of NAIs could be related to improvement of depressive symptoms. Conclusion: A growing evidence of data, although not yet conclusive, would suggest that NAIs might improve cognitive processes. These findings require specific and urgent controlled trials adopting systems based on AIs release to possible prevent and treat cognitive dysfunctions present in a broad range of neuropsychiatric conditions.


2021 ◽  
Vol 22 (8) ◽  
pp. 4052
Author(s):  
Kévin Nay ◽  
William J. Smiles ◽  
Jacqueline Kaiser ◽  
Luke M. McAloon ◽  
Kim Loh ◽  
...  

As life expectancy has increased, particularly in developed countries, due to medical advances and increased prosperity, age-related neurological diseases and mental health disorders have become more prevalent health issues, reducing the well-being and quality of life of sufferers and their families. In recent decades, due to reduced work-related levels of physical activity, and key research insights, prescribing adequate exercise has become an innovative strategy to prevent or delay the onset of these pathologies and has been demonstrated to have therapeutic benefits when used as a sole or combination treatment. Recent evidence suggests that the beneficial effects of exercise on the brain are related to several underlying mechanisms related to muscle–brain, liver–brain and gut–brain crosstalk. Therefore, this review aims to summarize the most relevant current knowledge of the impact of exercise on mood disorders and neurodegenerative diseases, and to highlight the established and potential underlying mechanisms involved in exercise–brain communication and their benefits for physiology and brain function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sara Zocher ◽  
Rupert W. Overall ◽  
Mathias Lesche ◽  
Andreas Dahl ◽  
Gerd Kempermann

AbstractThe decline of brain function during aging is associated with epigenetic changes, including DNA methylation. Lifestyle interventions can improve brain function during aging, but their influence on age-related epigenetic changes is unknown. Using genome-wide DNA methylation sequencing, we here show that experiencing a stimulus-rich environment counteracts age-related DNA methylation changes in the hippocampal dentate gyrus of mice. Specifically, environmental enrichment prevented the aging-induced CpG hypomethylation at target sites of the methyl-CpG-binding protein Mecp2, which is critical to neuronal function. The genes at which environmental enrichment counteracted aging effects have described roles in neuronal plasticity, neuronal cell communication and adult hippocampal neurogenesis and are dysregulated with age-related cognitive decline in the human brain. Our results highlight the stimulating effects of environmental enrichment on hippocampal plasticity at the level of DNA methylation and give molecular insights into the specific aspects of brain aging that can be counteracted by lifestyle interventions.


2021 ◽  
Vol 13 ◽  
Author(s):  
Laura A. Kuhne ◽  
Anna-Maria Ksiezarczyk ◽  
Klaus-Michael Braumann ◽  
Rüdiger Reer ◽  
Thomas Jacobs ◽  
...  

Due to increasing life expectancy, low-cost interventions to counteract age-related memory impairment have gained popularity. Physical activity has been shown to positively affect memory and hippocampal plasticity in rodents and humans. These effects have been proposed to be mediated by the release of neurotrophic factors. However, studies examining the effects of a single cardiovascular exercise session on human memory have yielded conflicting results. Moreover, it remains unclear whether exercise-induced memory enhancements are related to changes in peripheral neurotrophic factor concentrations. The present study tested whether one bout of cardiovascular exercise during an early phase of memory consolidation, compared to one bout of stretching and toning, positively affected memory. Furthermore, it was analyzed whether exercise-induced changes in the brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were related to memory enhancement after a single bout of physical exercise. Fifty healthy participants (20–40 years) were randomly assigned to either a cycling group (BIKE) or a stretching and toning group (STRETCH). Participants performed an implicit vocabulary learning task which was immediately followed by physical exercise. Memory for the learned vocabulary was tested 1–2 weeks later. To measure exercise-induced changes in serum neurotrophic factor levels, blood samples were collected at rest (baseline) and immediately after the exercise session. Results did not show a significant difference in memory between the BIKE group and the STRETCH group. However, in the BIKE group, a larger increase in BDNF and VEGF levels was observed than in the STRETCH group. Moreover, the increase in BDNF and memory performance tended to be positively related in the BIKE group. We speculate that the correlation between exercise-increased BDNF levels and memory in the cycling group may indicate an involvement of BDNF in mediating memory processes after acute cardiovascular exercise.


Sign in / Sign up

Export Citation Format

Share Document