scholarly journals The production, molecular weight and viscosifying power of alginate produced by Azotobacter vinelandii is affected by the carbon source in submerged cultures

DYNA ◽  
2015 ◽  
Vol 82 (194) ◽  
pp. 21-26 ◽  
Author(s):  
Mauricio A. Trujillo-Roldán ◽  
John Fredy Monsalve-Gil ◽  
Angélica Maria Cuesta-Álvarez ◽  
Norma A. Valdez-Cruz

Alginate is a linear polymer composed of <span style="font-family: symbol;">b</span>-1,4 linked mannuronic acid and its epimer, <span style="font-family: symbol;">a</span>-L-guluronic acid, and frequently extracted from marine algae, as from bacteria such as Azotobacter and Pseudomonas. Here, we show the impact of conventional and unconventional carbon sources on A. vinelandii growth, alginate production, its mean molecular weight (MMW) and its viscosifying power. Starting with 20 g/L of sugars, the highest biomass concentration was obtained using deproteinized and hydrolyzed whey (6.67±0.72 g/L), and sugarcane juice (6.68±0.45 g/L). However, the maximum alginate production was achieved using sucrose (5.11±0.37 g/L), as well the highest alginate yield and specific productivity. Otherwise, the higher alginate MMW was obtained using sugarcane juice (1203±120 kDa), and the higher viscosifying power was obtained using deproteinized/ hydrolyzed whey (23.8±2.6 cps L/galg). This information suggests that it is possible to manipulate the productivity and molecular characteristics of alginates, as a function of the carbon source used. All this, together with the knowledge of the effects of environmental conditions will allow for high yields of high added value biopolymers.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 458
Author(s):  
Oscar P. Yanchatuña Aguayo ◽  
Lynda Mouheb ◽  
Katherine Villota Villota Revelo ◽  
Paola A. Vásquez-Ucho ◽  
Prasad P. Pawar ◽  
...  

Bio-nanotechnology has emerged as an efficient and competitive methodology for the production of added-value nanomaterials (NMs). This review article gathers knowledge gleaned from the literature regarding the biosynthesis of sulfur-based chalcogenide nanoparticles (S-NPs), such as CdS, ZnS and PbS NPs, using various biological resources, namely bacteria, fungi including yeast, algae, plant extracts, single biomolecules, and viruses. In addition, this work sheds light onto the hypothetical mechanistic aspects, and discusses the impact of varying the experimental parameters, such as the employed bio-entity, time, pH, and biomass concentration, on the obtained S-NPs and, consequently, on their properties. Furthermore, various bio-applications of these NMs are described. Finally, key elements regarding the whole process are summed up and some hints are provided to overcome encountered bottlenecks towards the improved and scalable production of biogenic S-NPs.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Hamid Ait Said ◽  
Hassan Noukrati ◽  
Hicham Ben Youcef ◽  
Ayoub Bayoussef ◽  
Hassane Oudadesse ◽  
...  

Three-dimensional hydroxyapatite-chitosan (HA-CS) composites were formulated via solid-liquid technic and freeze-drying. The prepared composites had an apatitic nature, which was demonstrated by X-ray diffraction and Infrared spectroscopy analyses. The impact of the solid/liquid (S/L) ratio and the content and the molecular weight of the polymer on the composite mechanical strength was investigated. An increase in the S/L ratio from 0.5 to 1 resulted in an increase in the compressive strength for HA-CSL (CS low molecular weight: CSL) from 0.08 ± 0.02 to 1.95 ± 0.39 MPa and from 0.3 ± 0.06 to 2.40 ± 0.51 MPa for the HA-CSM (CS medium molecular weight: CSM). Moreover, the increase in the amount (1 to 5 wt%) and the molecular weight of the polymer increased the mechanical strength of the composite. The highest compressive strength value (up to 2.40 ± 0.51 MPa) was obtained for HA-CSM (5 wt% of CS) formulated at an S/L of 1. The dissolution tests of the HA-CS composites confirmed their cohesion and mechanical stability in an aqueous solution. Both polymer and apatite are assumed to work together, giving the synergism needed to make effective cylindrical composites, and could serve as a promising candidate for bone repair in the orthopedic field.


2021 ◽  
Vol 1 ◽  
pp. 2791-2800
Author(s):  
Jarkko Pakkanen ◽  
Teuvo Heikkinen ◽  
Nillo Adlin ◽  
Timo Lehtonen ◽  
Janne Mämmelä ◽  
...  

AbstractThe paper studies what kind of support could be applied to the management of partly configurable modular systems. The main tasks of product management, product portfolio management and product variety management are defined. In addition, a partly configurable product structure and modular system are defined. Because the limited support in the literature for managing partly configurable modular systems, the article reviews previous product development cases in which authors have been involved on lessons learnt basis, i.e., if the methods and tools used in the cases could provide support for the research objective. As a result, the existing definition of the modular system should be extended by the concepts of non-module and design decision sequence description when dealing with partly configurable modular systems. This is because engineer-to-order should be made possible in cases where it brings clear added value to the customer compared to completely pre-defined solutions that may limit the customer's interest in the offering. Tools to assess the impact of changes to the product offering are required. These should be taken into account in frameworks that are used in method and tool development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Matuszewska ◽  
Tomasz Maciąg ◽  
Magdalena Rajewska ◽  
Aldona Wierzbicka ◽  
Sylwia Jafra

AbstractPseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound (“cluster 17”) and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Passakorn Kingwascharapong ◽  
Manat Chaijan ◽  
Supatra Karnjanapratum

AbstractImpact of ultrasound-assisted process (UAP) on yield, functional properties, antioxidant properties and molecular characteristics of protein extracted from Bombay locusts (BL) (Patanga succinta L.) was studied. Different conditions of UAP were implemented for different amplitudes (40–60%) and times (10–30 min) during aqueous extraction. Notably, UAP could enhance yield and protein recovery, compared with those from typical process (TP) (continuously stirred at 100 rpm at room temperature for 1 h). UAP conditions used governed the change of surface hydrophobicity and free α-amino content of BL. UAP could improve solubility of BL, especially at pH levels higher than 2. UAP had no significant (p > 0.05) detrimental effects on foaming capacity and stability of BL. Nevertheless, UAP, particularly at 50–60% amplitudes, affected the emulsion activity and stability of BL. UAP provided BL with high radical scavenging activities and good electron donating ability, especially that from 60% amplitude for 20 min (UAP-60/20). UAP-60/20 showed the impact on change of isoelectric point and molecular characteristic monitored by Fourier transform infrared (FTIR) of BL, compared to those from TP. In addition, BL was also an excellent source of both essential and nonessential amino acids. Therefore, UAP potentially enhanced BL extraction efficiency, resulting the BL with good functional and antioxidative properties.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1137
Author(s):  
Sascha Stanic ◽  
Thomas Koch ◽  
Klaus Schmid ◽  
Simone Knaus ◽  
Vasiliki-Maria Archodoulaki

Blends of two long-chain branched polypropylenes (LCB-PP) and five linear polypropylenes (L-PP) were prepared in a single screw extruder at 240 °C. The two LCB-PPs were self-created via reactive extrusion at 180 °C by using dimyristyl peroxydicarbonate (PODIC C126) and dilauroyl peroxide (LP) as peroxides. For blending two virgin and three recycled PPs like coffee caps, yoghurt cups and buckets with different melt flow rate (MFR) values were used. The influence of using blends was assessed by investigating the rheological (dynamic and extensional rheology) and mechanical properties (tensile test and impact tensile test). The dynamic rheology indicated that the molecular weight as well as the molecular weight distribution could be increased or broadened. Also the melt strength behavior could be improved by using the two peroxide modified LCB-PP blends on the basis of PODIC C126 or PEROXAN LP (dilauroyl peroxide). In addition, the mechanical properties were consistently enhanced or at least kept constant compared to the original material. In particular, the impact tensile strength but also the elongation at break could be increased considerably. This study showed that the blending of LCB-PP can increase the investigated properties and represents a promising option, especially when using recycled PP, which demonstrates a real “up-cycling” process.


2021 ◽  
Vol 13 (7) ◽  
pp. 4058
Author(s):  
Paolo Esposito ◽  
Valerio Brescia ◽  
Chiara Fantauzzi ◽  
Rocco Frondizi

The aim of this paper is twofold: first, it aims to analyze what kind of value is generated by hybrid organizations and how; second, it aims to understand the role of social impact assessment (SIA) in the measurement of added value, especially in terms of social and economic change generated by hybrids. Hybrid organizations are a debated topic in literature and have different strengths in responding to needs, mainly in the public interest. Nevertheless, there are not many studies that identify the impact and change generated by these organizations. After highlighting the gap in the literature, the study proposes an innovative approach that combines SIA, interview, interventionist approach and documental analysis. The breakdown of SIA through the five elements of the value chain (inputs, activities, outputs, outcomes, and impact) guarantees a linear definition of the value generated through change with procedural objectivity capable of grasping hybrid organizations’ complexity. The value generated or absorbed is the change generated by the impact measured based on the incidence of public resources allocated. Through the SIA and counterfactual approach, the civil service case study analysis highlights how the value generated by public resources can be measured or more clearly displayed in the measurement process itself.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 777-777
Author(s):  
Qian-Li Xue ◽  
Kristine Ensrud ◽  
Shari Lin

Abstract As population aging is accelerating rapidly, there is growing concern on how to best provide patient-centered care for the most vulnerable. Establishing a predictable and affordable cost structure for healthcare services is key to improving quality, accessibility, and affordability. One such effort is the “frailty” adjustment model implemented by the Centers for Medicare & Medicaid Services (CMS) that adjusts payments to a Medicare managed care organization based on functional impairment of its beneficiaries. Earlier studies demonstrated added value of this frailty adjuster for prediction of Medicare expenditures independent of the diagnosis-based risk adjustment. However, we hypothesize that further improvement is possible by implementing more rigorous frailty assessment rather than relying on self-report of ADL difficulties as used for the frailty adjuster. This is supported by the consensus and clinical observations that neither multimorbidity nor disability alone is sufficient for frailty identification. This symposium consists of four talks that leverage data from three CMS-linked cohort studies to investigate the utility of assessment of the frailty phenotype for predicting healthcare utilization and costs. Talk 1 and 2 use data from the NHATS cohort to assess healthcare utilization by frailty status in the general population and the homebound subset. Talk 3 and 4 use data from the MrOS study and the SOF study to investigate the impact of frailty phenotype on healthcare costs. Taken together, their findings highlight the potential of incorporating phenotypic frailty assessment into CMS risk adjustment to improve the planning and management of care for frail older adults.


2021 ◽  
Vol 10 (2) ◽  
pp. 94
Author(s):  
Andreas Tsatsaris ◽  
Kleomenis Kalogeropoulos ◽  
Nikolaos Stathopoulos ◽  
Panagiota Louka ◽  
Konstantinos Tsanakas ◽  
...  

Human activities and climate change constitute the contemporary catalyst for natural processes and their impacts, i.e., geo-environmental hazards. Globally, natural catastrophic phenomena and hazards, such as drought, soil erosion, quantitative and qualitative degradation of groundwater, frost, flooding, sea level rise, etc., are intensified by anthropogenic factors. Thus, they present rapid increase in intensity, frequency of occurrence, spatial density, and significant spread of the areas of occurrence. The impact of these phenomena is devastating to human life and to global economies, private holdings, infrastructure, etc., while in a wider context it has a very negative effect on the social, environmental, and economic status of the affected region. Geospatial technologies including Geographic Information Systems, Remote Sensing—Earth Observation as well as related spatial data analysis tools, models, databases, contribute nowadays significantly in predicting, preventing, researching, addressing, rehabilitating, and managing these phenomena and their effects. This review attempts to mark the most devastating geo-hazards from the view of environmental monitoring, covering the state of the art in the use of geospatial technologies in that respect. It also defines the main challenge of this new era which is nothing more than the fictitious exploitation of the information produced by the environmental monitoring so that the necessary policies are taken in the direction of a sustainable future. The review highlights the potential and increasing added value of geographic information as a means to support environmental monitoring in the face of climate change. The growth in geographic information seems to be rapidly accelerated due to the technological and scientific developments that will continue with exponential progress in the years to come. Nonetheless, as it is also highlighted in this review continuous monitoring of the environment is subject to an interdisciplinary approach and contains an amount of actions that cover both the development of natural phenomena and their catastrophic effects mostly due to climate change.


2021 ◽  
Vol 13 (4) ◽  
pp. 1783
Author(s):  
Maria Luisa Lode ◽  
Geert te Boveldt ◽  
Cathy Macharis ◽  
Thierry Coosemans

Energy communities (ECs) play a role in the transition towards a low-carbon economy by 2050 and receive increasing attention from stakeholders within the energy sector. To foster ECs, transition management (TM) is a promising managerial approach to steer and guide the transition towards more sustainable practices. However, TM lacks a consistent methodology that addresses the criticism of the current application. To investigate what a structured and replicable TM approach for ECs can look like, this paper applies the multi-actor multi-criteria analysis (MAMCA), a participative multi-criteria decision method, to a case study EC in the Netherlands involving various stakeholders. The impact of the application on power relations, the political sphere, sustainability conceptualization, guidance of transitions, and representation was analyzed. MAMCA was found useful for multi-stakeholder settings seen in potential ECs, offering a unifying methodology for the practical application of TM. In the EC setting, the added value of MAMCA within TM lies more in the social representation, insight into stakeholder viewpoints, and communication rather than in final decision-making.


Sign in / Sign up

Export Citation Format

Share Document