Development of an antibiotic resistance monitoring system in Hungary

2002 ◽  
Vol 50 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Éva J. Kaszanyitzky ◽  
A. Tarpai ◽  
Sz. Jánosi ◽  

Because of the rapid development and spread of antimicrobial resistance it is important that a system be established to monitor antimicrobial resistance in pathogenic zoonotic and commensal bacteria of animal origin. Susceptibility testing of bacteria from carcasses and different samples of animal origin has been carried out in veterinary institutes for a long time but by an inconsistent methodology. The disc diffusion method proposed by the National Committee for Clinical Laboratory Standards (NCCLS) was introduced in all institutes in 1997. In order to obtain a coherent view of the antimicrobial resistance of bacteria a computer system was consulted, consisting of a central computer to store all data and some local computers attached to it through the network. At these local measuring stations computers are connected to a video camera, which displays the picture of Petri dishes on the monitor, and inhibition zone diameters of bacteria can be drawn with the mouse by the inspector. The software measures the diameters, evaluates whether or not the bacteria are sensitive, and stores the data. The evaluation is based upon the data of the NCCLS. The central computer can be connected to as many local computers with measuring stations as we wish, so it is suitable for an integrated system for monitoring trends in antimicrobial resistance of bacteria from animals, food and humans, facilitating comparison of the occurrence of resistance for each circumstance in the chain. It depends on the examiners which antibiotics they want to examine. Thirty-two different antibiotic panels were compiled, taking into consideration the active ingredients of medicinal products permitted for veterinary use in Hungary, natural resistance and cross-resistance, the mechanism of resistance and the animal species, i.e. which drugs were recommended for treatment in the given animal species, and the recommendations of the OIE Expert Group on Antimicrobial Resistance. The members of the panels can be changed any time, even during the measuring process. In addition to the inhibition zone diameters of bacteria the database also includes information about bacterial and animal species, the age of animals and the sample or organ where the bacteria are from. Since January 2001 the antibiotic susceptibility of E. coli, Salmonella, Campylobacter and Enterococcus strains isolated from the colons of slaughter cows, pigs and broiler chickens has also been examined. Each of the 19 counties of Hungary submits to the laboratory three tied colon samples from a herd of the above-mentioned animals every month.

2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Aleksandra Šmitran ◽  
Dijana Jelić ◽  
Sanja Pržulj ◽  
Savka Vračević ◽  
Dragana Gajić ◽  
...  

Last decade is designated as the postantibiotic era due to increasing number of resistant and multiresistant strains of microorganisms, which developed resistance to one or more antibiotics. Antimicrobial resistance becomes a global health problem. This phenomenon of antimicrobial resistance will undoubtedly affect the efficiency and use of antibiotics in the future. Science and technological development are committed to researching and developing new antibiotics that will satisfy the missing criteria and address the problem of antimicrobial resistance. One of the possible solutions lies in nanotechnologies. Nanoparticles have been isolated as one of the most promising substances on which microorganisms rarely or even develop mechanisms of resistance. The nanoparticles may be in conjunction with already existing antibiotics structures and contribute to the improvement of physicochemical properties in order to successfully overcome the mechanism of antimicrobial resistance. By designing nanoparticles with proper physicochemical and biochemical characteristics we determine their application. The aim of this research is to dope synthesized iron oxide nanoparticles with copper ions in order to test their antimicrobial activity and to evaluate their use as potential antimicrobial agent. Extracts of green tea and ascorbic acid were used as reduction agent for the iron oxide nanoparticles doped with Cu. The antimicrobial activity of the synthesized nanoparticles on the isolates Acinetobacter baumannii and methicillin resistant Staphylococcus aureus (MRSA) was performed by the agar well diffusion method. Synthesized iron oxide nanoparticles showed activity against Acinetobacter baumannii with inhibition zone around 12 mm. Photocatalytical activity was also evaluated by UV/VIS spectrophotometry. Samples doped with copper showed much better photocatalytical performances.


2020 ◽  
Vol 15 (1) ◽  
pp. 1934578X1987890
Author(s):  
Valeria Listorti ◽  
Roberta Battistini ◽  
Carlo Ercolini ◽  
Clara Tramuta ◽  
Elisabetta Razzuoli ◽  
...  

Antimicrobial resistance has become a global threat to public health. There is a critical need to find new antimicrobial substances from natural sources. The aim of this study was to investigate the antimicrobial activity of essential oils (EOs) obtained from Origanum vulgare, Thymus serpyllum, Thymus vulgaris, and Melaleuca alternifolia against multidrug resistant strains of Salmonella isolated from samples of diverse animal origin. The strains were biochemically identified, serotyped, and characterized for their antimicrobial resistance profiles. The antimicrobial activity of the EOs against the strains was evaluated using the Kirby-Bauer diffusion method, followed by determination of the minimal inhibitory concentration and minimum bactericidal concentrations. The EOs of T. serpyllum and O. vulgare, which contain carvacrol as the main compound, show excellent antimicrobial activity.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Rita Ohene Larbi ◽  
Linda Aurelia Ofori ◽  
Augustina Angelina Sylverken ◽  
Matilda Ayim-Akonor ◽  
Kwasi Obiri-Danso

Globally, resistance to antimicrobial drugs in food animals is on the rise. Escherichia coli of livestock, though commensal in nature, serves as reservoir for antimicrobial resistance genes with the potential of disseminating them. This study sought to examine the antimicrobial resistance profiles of Escherichia coli in broilers, pigs, and cattle in the Kumasi Metropolis and undertake molecular characterisation of the resistances. Faecal E. coli isolates (n = 48) were obtained from 10 broiler farms, (n = 43) from 15 pig farms, and (n = 42) from cattle from the Kumasi Abattoir using standard bacteriological techniques. The Kirby–Bauer disc diffusion method was employed in testing the sensitivities of 133 E. coli isolates to 15 antimicrobials. All 48 isolates from broilers presented no resistance to amoxicillin/clavulanic acid and ceftiofur. A 100% resistance to meropenem was observed in pig and cattle isolates. Multidrug resistance (MDR) across animal groups was 95.8% (n = 46), 95.3% (n = 41), and 64.3% (n = 27) for broilers, pigs, and cattle, respectively. Twenty-eight isolates presenting phenotypic resistance to aminopenicillins and cephalosporins were screened for the presence of extended-spectrum beta-lactamase (ESBL) genes by PCR. One isolate from poultry and another from cattle tested positive for the blaCTX-M ESBL gene. There were no positives for the blaTEM and blaSHV ESBL genes. Commensal E. coli of food animal origin represents an important reservoir of antimicrobial resistance that transfers resistance to pathogenic and nonpathogenic microbes affecting humans and animals. There is an urgent need to institute routine surveillance for the establishment of the mechanisms and molecular orientation of resistance in these organisms.


2021 ◽  
Vol 9 (5) ◽  
pp. 885
Author(s):  
Dorcas Oladayo Fatoba ◽  
Akebe Luther King Abia ◽  
Daniel G. Amoako ◽  
Sabiha Y. Essack

The current study investigated the impact of chicken litter application on the abundance of multidrug-resistant Enterococcus spp. in agricultural soil. Soil samples were collected from five different strategic places on a sugarcane farm before and after manure application for four months. Chicken litter samples were also collected. Enterococci were enumerated using the Enterolert®/Quanti-Tray 2000® system and confirm and differentiated into species using real-time PCR. The antibiotic susceptibility profile of the isolates was determined using the disk diffusion method following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The overall mean bacterial count was significantly higher (p < 0.05) in manure-amended soil (3.87 × 107 MPN/g) than unamended soil (2.89 × 107 MPN/g). Eight hundred and thirty-five enterococci (680 from soil and 155 from litter) were isolated, with E. casseliflavus being the most prevalent species (469; 56.2%) and E. gallinarum being the least (16; 1.2%). Approximately 56% of all the isolates were resistant to at least one antibiotic tested, with the highest resistance observed against tetracycline (33%) and the lowest against chloramphenicol (0.1%); 17% of E. faecium were resistant to quinupristin-dalfopristin. Additionally, 27.9% (130/466) of the isolates were multidrug-resistant, with litter-amended soil harbouring more multidrug-resistant (MDR) isolates (67.7%; 88/130) than unamended soil (10.0%; 13/130). All isolates were susceptible to tigecycline, linezolid and gentamicin. About 7% of the isolates had a multiple antimicrobial resistance index > 0.2, indicative of high antibiotic exposure. Although organic fertilizers are regarded as eco-friendly compared to chemical fertilizers for improving soil fertility, the application of untreated animal manure could promote the accumulation of antibiotics and their residues and antibiotic-resistant bacteria in the soil, creating an environmental reservoir of antimicrobial resistance, with potential human and environmental health risks.


2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 454
Author(s):  
Robinson H. Mdegela ◽  
Elibariki R. Mwakapeje ◽  
Bachana Rubegwa ◽  
Daniel T. Gebeyehu ◽  
Solange Niyigena ◽  
...  

All infections are potentially curable as long as the etiological agents are susceptible to antimicrobials. The increased rate at which antimicrobials are becoming ineffective is a global health risk of increasing concern that threatens withdrawal of beneficial antimicrobials for disease control. The increased demand for food of animal origin, in particular eggs, meat and milk has led to intensification and commercial production systems where excessive use and misuse of antimicrobials may prevail. Antimicrobials, handled and used by farmers and animal attendants with no formal education, may be predisposed to incorrect dosages, misuse, incorrect applications and non-adherence to withdrawal periods. This study was conducted to assess the regulatory roles and governance of antimicrobials, establish the pattern and extent of their use, evaluate the antimicrobial residues and resistance in the food animals and crop agriculture value chains, and relate these findings to existing strategies in place for combating the emergence of antimicrobial resistance in Tanzania. A multimethod approach (desk review, field study and interviews) was used. Relevant establishments were also visited. High levels of resistance to penicillin G, chloramphenicol, streptomycin and oxytetracycline have been reported, especially for Actinobacter pyogenes, Staphylococcus hyicus, Staphylococcus intermedius and Staphylococcus aureus from dairy cattle with mastitis and in humans. Similar trends were found in poultry where eggs and meat are contaminated with Escherichia coli strains resistant to amoxicillin + clavulanate, sulphamethoxazole and neomycin. An increasing trend of emerging multidrug resistant E. coli, Klebsiella pneumoniae, Staphylococcus aureus and Salmonella was also found in food animals. An increase in methicillin resistant Staphlococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL) in the livestock sector in Tanzania have been reported. The pathogens isolated in animals were resistant to ampicillin, augmentin, gentamicin, co-trimoxazole, tetracycline, amoxicillin, streptomycin, nalidixic acid, azithromycin, chloramphenicol, tylosin, erythromycin, cefuroxime, norfloxacin and ciprofloxacin. An increased usage of antimicrobials for prophylaxis, and therapeutics against pathogens and for growth promotion in livestock, aquaculture and crop production were observed. A One Health strategic approach is advocated to combat antimicrobial resistance (AMR) in the food and agriculture sectors in Tanzania. Practical recommendations include (a) legislation review and implementation; (b) antimicrobial use (AMU), AMR and antimicrobial residue (AR) awareness and advocacy among stakeholders along the value chain; (c) strengthening of surveillance and monitoring programs for AMU, AMR and AR; (d) enhanced development and use of rapid and innovative diagnostic tests and the promotion of biosecurity principles; and (e) good husbandry practices. The utilization of this information to improve public health policies and reduce the burden of AMR will be beneficial.


Author(s):  
Dharani Dharan ◽  
K. Venkatesh ◽  
S.S. Meenambiga ◽  
Dhivya Dhanasekar ◽  
P. Arumugam

The presented work represents phytochemical analysis, Antioxidant assay and Antimicrobial activity of Bhut jolokia pepper (Capsicum chinense Jacq) extracted by ethanol as solvent. The ethanolic extract of Bhut jolokia pepper showed the presence of terpenoids, steroids, saponins and flavonoids. Antimicrobial assay was done with varying concentration (250-1000µg/ml) of pepper extract using tetracycline as control by well diffusion method, the extract at 750µg/ml shown best inhibition zone and Staphylococcus aureus showed the highest zone of inhibition at all concentration compared to other bacteria species with maximum zone of inhibition of 27mm. The DPPH scavenging assay for antioxidant activity at 517nm showed positive activity for scavenging, scavenging increased with the concentration of extract. Thus, Bhut jolokia could be effective in treating diseases caused by Staphylococcus aureus from antimicrobial assay result.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Irma Zarwinda ◽  
Fauziah Fauziah ◽  
Shara Shevalinda ◽  
Dwi Putri Rejeki

Startfruit (Averrhoa bilimbi L.) is one the kind of plant that is widely used as a traditional herbal medicineto overcome various diseases i.e. diabetes mellitus, cough, rheumatism, thrush, diabetes, toothache, acne, etc. The secondary metabolites of the starfruit leaves contain flavonoids and tannins, whereby these activecompounds can be used as an antibacterial. This study aimed to determine the inhibiting power of starfruit leaf ethanol extract against Staphylococcus epidermidis at concentrations of 25%, 50%, 75%, and 100%. The research was conducted at the  AKAFARMA Laboratory and the Chemistry Laboratory , Faculty of Teacher Training and Education, Syiah Kuala University from June to July 2020. The research method was laboratory experimental using the disk diffusion method. The population of starfruit leaves was obtained from Lhokseumawe  using a purposive sampling technique. Ethanol extract of starfruit leaves with concentrations of 25%, 50%, 75%, and 100%. The diameter of the inhibition zone of the ethanol extract  from the starfruit leaves at  concentrations of 100%, 75%, 50%, and 25% were 15 mm, 12 mm, 11 mm and 10 mm, respectively. It can be concluded that  ethanol extract of starfruit leaves can inhibit the growth  of  Staphylococcus  epidermidis  with  a  maximum inhibitory concentration  of  100%,  which is classified  as a strong category.


Author(s):  
Sneka S ◽  
Preetha Santhakumar

Nano particles have an enormous impact on society. Selenium nanoparticles are used in various oxidative stresses. Capparis decidua is a plant which belongs to a family Capparidaceae. Capparis decidua is found in desert and semi desert areas and is used in Unani medicine and traditional system of medicine. The aim of the present study was to evaluate the antibacterial activity of selenium nanoparticles synthesized using Capparis decidua. Antibacterial activity was studied by inhibition zone against E.coli and Lactobacillus using Agar well diffusion method which was characterized by a clear zone. Selenium nanoparticles extracted from Capparis decidua fruit showed good antibacterial activity against lactobacillus species and E.coli.


2021 ◽  
Vol 11 (Number 2) ◽  
pp. 58-67
Author(s):  
Mahjuba Umme Salam ◽  
Selina Yasmin ◽  
Md. Rashedul Haque ◽  
Sharmin Ahmed ◽  
Shahidul Alam ◽  
...  

Background: Escherichia coli is a common causative of blood stream infection having potentials to produce significant morbidity and mortality. This organism also has the ability to develop resistance against antimicrobial agents. Knowing its epidemiology, risk factors and antimicrobial resistance patterns can help preventing and managing bacteremia caused by this organism. Materials and methods: This was across sectional observational study carried out from February 2017 to February 2018 on 64 blood culture positive Escherichia coli infected patients admitted in Medicine inpatient of a medical college hospital. Age, sex, mode of acquisition of infection, history of prior empiric antibiotic treatment, duration of hospital stay, development of complication were observed and noted. Antibiotic susceptibility test for all isolates was performed by Kirby-Bauer disc diffusion method. Predesigned semi-structured data collection from was used and collected data were analyzed manually and expressed in descriptive statistical terms. Results: Of the 64 enrolled patients, 47(73.43%) were female. Average age of affection was 53.48±20.65 years and increased incidence rates (51.56%) was observed at age >60 years. Infection was communityacquired in 35.84% cases and urinary tract infection was the most frequent (46.3) risk factor. More than eighty seven percent of samples showed resistance to at least one antimicrobial agent and resistance to multiple drugs was associated with complications. Conclusion: Escherichia coli bacteremia has high incidence rates for antimicrobial resistance and mortality. Continuous surveillance and antibiotic susceptibility pattern monitoring is essential to develop regional antibiotic therapy protocols.


Sign in / Sign up

Export Citation Format

Share Document