Modeling the Novel Coronavirus (SARS-CoV-2) Outbreak in Sicily, Italy
Italy was the first country in Europe which imposed control measures of travel restrictions, quarantine and contact precautions to tackle the epidemic spread of the novel coronavirus (SARS-CoV-2) in all its regions. While such efforts are still ongoing, uncertainties regarding SARS-CoV-2 transmissibility and ascertainment of cases make it difficult to evaluate the effectiveness of restrictions. Here, we employed a Susceptible-Exposed-Infectious-Recovered-Dead (SEIRD) model to assess SARS-CoV-2 transmission dynamics, working on the number of reported patients in intensive care unit (ICU) and deaths in Sicily (Italy), from 24 February to 13 April. Overall, we obtained a good fit between estimated and reported data, with a small fraction of unreported SARS-CoV-2 cases (19.5%; 95%CI=0%-34.7%) before 10 March lockdown. Interestingly, we estimated that the first set of restrictions reduced transmission rate in the community by 42% (95%CI=38%-46%), and that more stringent measures adopted on 23 March succeeded to drastically curb the transmission rate by 84% (95%CI=80%-88%). Thus, our estimates delineated the characteristics of SARS-CoV2 epidemic before restrictions taking into account unreported data. Further modeling after the adoption of control measures, moreover, indicated that restrictions reduced SARS-CoV2 transmission considerably.