scholarly journals Transcriptome and metabolome analyses revealing the potential mechanism of seed germination in Polygonatum cyrtonema

2020 ◽  
Author(s):  
Rong Liu ◽  
Jing Lu ◽  
Jiayi Xing ◽  
Chihong Zhang ◽  
Min Zhou ◽  
...  

Abstract Background: Polygonatum cyrtonema Hua is a Chinese traditional medicine in the Liliaceae family. It have unique medical and edible value. However, the Polygonatum cyrtonema seeds are naturally difficult to germinate. Its reproductive and growth cycles should be accelerated through artificial technologies for meeting the market demand. Therefore, to beak the seeds dormancy and to elucidate the mechanism of germination, the metabolomics and transcriptomics analysis were performed in this study. Results: The results indicate that plant hormone (auxin, GA, ABA) were involved in seed germination. Furthermore, the expression levels of unigenes and α-amylase activity were increased in germinated seeds. In addition, the metabolites of phenylpropanoid and flavonoid biosynthesis were accumulated in Polygonatum cyrtonema seeds. Hhydroxycinnamyl (caffeic acid, coniferin and sinapic acid et al.), organic acids (benzoic acid, ferulic acid, and coumaric acid etc.) were significantly decreased, while flavonoids significantly accumulated during the germination. The results suggest that the metabolites of germinated seeds were mainly to promote flavonoids synthesis and to inhibit the lignin synthesis, which was beneficial to germination of Polygonatum cyrtonema. And hydrolysis of starch to glucose can provides necessary energy for germination. Conclusions: Our results give a novel insights into the regulating networks of seed germination and pave the way for Polygonatum cyrtonema seeds propagation and cultivation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rong Liu ◽  
Jing Lu ◽  
Jiayi Xing ◽  
Mei Du ◽  
Mingxiu Wang ◽  
...  

AbstractPolygonatum cyrtonema Hua (Huangjing, HJ) has medicinal and edible value in China. However, the seeds of this plant are naturally difficult to germinate. Therefore, to elucidate the mechanism underlying the germination of this plant in order to meet the market demand, the metabolomic and transcriptomic analyses were performed in this study. We observed that plant hormones and α-amylase activity were differentially regulated when comparing germinated and un-germinated seeds. In addition, the metabolites related to phenylpropanoid and flavonoid biosynthesis were significantly up-accumulated in germinated seeds. Hydroxycinnamoyl derivatives and organic acids were observed to be significantly decreased during germination. The results of this study suggested that compared to un-germinated seeds, germinated seeds promote flavonoid synthesis and inhibit lignin synthesis which could be beneficial to the germination of HJ seeds. Furthermore, these results suggested that starch if hydrolyzed into glucose, which could provide the necessary energy for germination. Our results may help to establish a foundation for further research investigating the regulatory networks of seed germination and may facilitate the propagation of HJ seeds.


2018 ◽  
Vol 17 (4) ◽  
pp. 349-354
Author(s):  
Qadir Rahman ◽  
Anwar Farooq ◽  
Amjad Gilani Mazhar ◽  
Nadeem Yaqoob Muhammad ◽  
Ahmad Mukhtar

This study investigates the effect of enzyme formulations (Zympex-014, Kemzyme dry-plus and Natuzyme) on recovery of phenolics from Peganum hermala (harmal) leaves, under optimized conditions using response surface methodology. As compared to the other enzyme complexes, the yield (34 g/100g) obtained through Zympex-014-assisted extraction was higher under optimized conditions such as time (75 min), temperature (70°C), pH (6.5) and enzyme concentration (5 g/100 g) using central composite design (CCD). Effectiveness of Zympex-014 towards hydrolysis of P. hermala leaves cell wall was examined by analyzing the control and enzyme-treated leave residues using scanning electron microscope (SEM). GC/MS characterization authenticated the presence of quercetin (1.44), gallic acid (0.23), caffeic acid (0.04), cinnamic acid (0.05), m-coumaric acid (0.23) and p-coumaric acid (0.37 μg/g) as the potent phenolics in Zympex-014 based extract. It can be concluded from the findings of the current work that pre-treatment of P. hermala leaves with Zympex-014 significantly enhanced the recovery of phenolics that supports its potential uses in the nutra-pharamaceutical industry.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 456f-457 ◽  
Author(s):  
Ali O. Sari ◽  
Mario R. Morales ◽  
James E. Simon

Echinacea is a medicinal plant native to North America. It was used extensively by native Americans in the treatment of their ailments. It is presently one of the most popular medicinal plants in the United States. Its popularity has created a large market demand for the roots and foliage of the plant. The gathering of echinacea from the wild is leading to the reduction of native populations and the destruction of its genetic diversity. Cultivation of medicinal echinaceas is hindered by a low seed germination. Dormancy breaking studies were done on freshly harvested seeds of Echinacea angustifolia. Seed lots were placed under light at a constant temperature of 25 °C and at alternate temperatures of 25/15 °C for 14/10 h, respectively. Germination was more rapid and uniform and percent germination higher at 25 °C than at 25/15 °C. Seed tap-water soaking, dry heating, and sharp heating alteration did not increase germination. The application of 1.0 mM ethephon (2-chloroethylphosphoric acid) increased seed germination to 94% at 25 °C and 86% at 25/15 °C. Untreated seeds gave 65% germination at 25 °C and 11% at 25/15 °C. The application of 2500 mg·L–1 and 3500 mg·L–1 of GA to dry seeds and 2500 mg·L–1 to seeds that have been soaked under tap water and then dried increased germination to 82%, 83%, and 83% at 25 °C and 64%, 78%, and 64% at 25/15 °C, respectively.


1992 ◽  
Vol 2 (1) ◽  
pp. 15 ◽  
Author(s):  
L Valbuena ◽  
R Tarrega ◽  
E Luis

The influence of high temperatures on germination of Cistus laurifolius and Cistus ladanifer seeds was analyzed. Seeds were subjected to different temperatures for different times, afterwards they were sowed in plastic petri dishes and monitored for germinated seeds over two months.The germination rate observed in Cistus ldanifer was greater than in Cistus laurifolius. In both species, heat increased germination percentages. For Cistus laurifolius higher temperatures or longer exposure times were needed. Germination percentages of Cistus ladanifer were lower when heat exposure time was 15 minutes.It must be emphasized that germination occurred when seeds were not treated, while seeds exposed to 150�C for 5 minutes or more did not germinate.


1959 ◽  
Vol 37 (1) ◽  
pp. 537-547 ◽  
Author(s):  
D. R. McCalla ◽  
A. C. Neish

p-Coumaric, caffeic, ferulic, and sinapic acids were found to occur in Salvia splendens Sello in alkali-labile compounds of unknown constitution. A number of C14-labelled compounds were administered to leafy cuttings of salvia and these phenolic acids were isolated after a metabolic period of several hours and their specific activities measured. Cinnamic acid, dihydrocinnamic acid, L-phenylalanine, and (−)-phenyllactic acid were found to be good precursors of the phenolic acids. D-Phenylalanine, L-tyrosine, and (+)-phenyllactic acid were poor precursors. A kinetic study of the formation of the phenolic acids from L-phenylalanine-C14 gave data consistent with the view that p-coumaric acid → caffeic acid → ferulic acid → sinapic acid, and that these compounds can act as intermediates in lignification. Feeding of C14-labelled members of this series showed that salvia could convert any one to a more complex member of the series but not so readily to a simpler member. Caffeic acid-β-C14 was obtained from salvia after the feeding of L-phenylalanine-β-C14 or cinnamic acid-β-C14, and caffeic acid labelled only in the ring was obtained after feeding generally labelled shikimic acid.


Separations ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 13
Author(s):  
Petra Ranušová ◽  
Ildikó Matušíková ◽  
Peter Nemeček

A solid-phase extraction (SPE) procedure was developed for simultaneous monitoring of sixteen different phenolics of various polarity, quantified by high-performance liquid chromatography (HPLC). The procedure allowed screening the accumulation of intermediates in different metabolic pathways that play a crucial role in plant physiology and/or are beneficial for human health. Metabolites mostly involved in phenylpropanoid, shikimate, and polyketide pathways comprise chlorogenic acid, gentisic acid, vanillic acid, caffeic acid, protocatechuic acid, ferulic acid, rutin, quercetin, epicatechin, gallic acid, sinapic acid, p-coumaric acid, o-coumaric acid, vanillin; two rarely quantified metabolites, 2,5-dimethoxybenzoic acid and 4-methoxycinnamic acid, were included as well. The procedure offered low cost, good overall efficiency, and applicability in laboratories with standard laboratory equipment. SPE recoveries were up to 99.8% at various concentration levels. The method allowed for routine analysis of compounds with a wide range of polarity within a single run, while its applicability was demonstrated for various model plant species (tobacco, wheat, and soybean), as well as different tissue types (shoots and roots).


Author(s):  
Weihong Sun ◽  
Guofeng Yang ◽  
Lili Cong ◽  
Juan Sun ◽  
Lichao Ma

Background: Plant allelopathy refers to the release of chemicals from plants or microorganisms into the environment, may have direct or indirect, beneficial or harmful effects on other plants or microorganisms. When plants grow in an unfavorable environment,more allelochemicals will be secreted and the expression of allelopathic effects will increase, giving plants a certain competitive advantage. Hairy vetch is one of the most promising allelopathic crops and the aqueous extract of hairy vetch has an inhibitory effect on the root length and seedling height of grass crops. The current study aimed to study the allelopathic effect of hairy vetch on alfalfa, and exploring an ecological method to remove the root system of alfalfa.Methods: In this experiment, the allelopathic effects of the seeds, stems and leaves, roots extracts and root exudates (0, 3, 6, 9 and 12 mg·mL-1) on the seed germination and seedling growth of alfalfa were evaluated. And the main allelopathic substances from the stem and leaf extract were isolated and identified using high performance liquid chromatography- mass spectrometry (HPLC-MS).Result: The results showed that all of the extracts can inhibit alfalfa seed germination and seedling growth and stem and leaf extract had the strongest inhibitory effect, especially for inhibiting the root growth. A main allelochemical substance, o-coumaric acid, was screened out and the root length of alfalfa was completely inhibited at 1.6 mg·mL-1 of o-coumaric acid. The findings of these experiments show hairy vetch has strong allelopathic effect on alfalfa and o-coumaric acid is a chemical growth inhibitor.


2008 ◽  
Vol 32 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Renata Braga Souza Lima ◽  
José Francisco de Carvalho Gonçalves ◽  
Silvana Cristina Pando ◽  
Andréia Varmes Fernandes ◽  
André Luis Wendt dos Santos

This study aimed to characterize protein, oil, starch and soluble sugar mobilization as well as the activity of alpha-amylase during rosewood seed germination. Germination test was carried out at 25°C and the following parameters were analyzed: percentage of germination, initial, average, and final germination time. Seed reserve quantification was monitored in quiescent seeds and during different stages of radicle growth. Starch mobilization was studied in function of a-amylase activity. Germination reached 87.5% at the initial, average, and final time of 16, 21 and 30 days, respectively. Oil mobilization showed a negative linear behavior, decreasing 40% between the first and the last stage analyzed, whereas protein levels increased 34.7% during the initial period of germination. Starch content (46.4%) was the highest among those of the metabolites analyzed and starch mobilization occurred inversely to the observed for soluble sugars; alpha-amylase activity increased until the 15th day, a period before radicle emission and corresponding to the highest starch mobilization. The high percentage of rosewood seed germination may be related to the controlled condition used in the germination chamber as well as to high seed reserve mobilization, in special oil and starch.


2017 ◽  
Vol 44 (No. 4) ◽  
pp. 178-185 ◽  
Author(s):  
Alina Kałużewicz ◽  
Jolanta Lisiecka ◽  
Monika Gąsecka ◽  
Włodzimierz Krzesiński ◽  
Tomasz Spiżewski ◽  
...  

This study was conducted to study the influence of plant density and irrigation on the content of phenolic compounds, i.e., phenolic acids and flavonols in cv. ‘Sevilla’ cauliflower curds. Levels of phenolic acids and flavonols were in the range of 3.0–6.2 mg and 25.4–87.8 mg/100 g of dry weight, respectively, depending on plant density and irrigation. Of the phenolic acids, caffeic acid was detected in the highest amount, followed by p-coumaric acid, sinapic acid, gallic acid, and ferulic acid. Of the two flavonols detected, the levels of quercetin were higher than those of kaempferol. The content of the detected phenolic acids (with the exception of ferulic acid) and both flavonols increased with increasing plant density. Furthermore, the concentration of phenolic compounds (with the exception of ferulic acid) was significantly higher under irrigation.


2011 ◽  
Vol 94 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Anna Bogucka-Kocka ◽  
Katarzyna Szewczyk ◽  
Magdalena Janyszek ◽  
Sławomir Janyszek ◽  
Łukasz Cieśla

Abstract Eighteen species belonging to the Carex genus were checked for the presence and the amount of eight phenolic acids (p-hydroxybenzoic, vanillic, caffeic, syringic, protocatechuic, p-coumaric, sinapic, and ferulic) by means of HPLC. Both the free and bonded phenolic acids were analyzed. The majority of the analyzed acids occurred in the studied species in relatively high amounts. The highest concentrations found were caffeic acid and p-coumaric acid, for which the detected levels were negatively correlated. A very interesting feature was the occurrence of sinapic acid, a compound very rarely detected in plant tissues. Its distribution across the analyzed set of species can be hypothetically connected with the humidity of plants' habitats. Several attempted tests of aggregative cluster analysis showed no similarity to the real taxonomical structure of the genus Carex. Thus, the phenolic acids' composition cannot be considered as the major taxonomical feature for the genus Carex.


Sign in / Sign up

Export Citation Format

Share Document