scholarly journals The use of levelised cost in comparing supply and demand side options

2003 ◽  
Vol 3 (3) ◽  
pp. 185-192 ◽  
Author(s):  
S. Fane ◽  
J. Robinson ◽  
S. White

This paper explores the use of levelised cost in planning for infrastructure networks. Levelised cost provides a useful measure comparing supply or conservation options on varying scales on an equivalent basis. Comparison is made to annualised cost, a metric often used as a means of comparing different supply side options. Urban water supply is used as the primary example, however levelised cost is equally applicable to other infrastructure networks, such as electricity or gas. The levelised cost is calculated as the ratio of the present value of projected capital and operating cost of an option to the present value of the projected annual demand supplied or saved by the option. The paper demonstrates that levelised cost is the constant unit cost of supply, provided by an option at present value. It is also the average incremental cost of the option at the point of implementation. When translated to a unit cost, annualised cost does not account for unutilised capacity in large scale schemes, systematically under-representing actual costs. By using levelised cost this inherent bias is removed. Use of levelised cost would facilitate the inclusion of smaller scale and more incremental supply options into infrastructure networks providing both economic and environmental benefits.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Oskar Englund ◽  
Pål Börjesson ◽  
Blas Mola-Yudego ◽  
Göran Berndes ◽  
Ioannis Dimitriou ◽  
...  

AbstractWithin the scope of the new Common Agricultural Policy of the European Union, in coherence with other EU policies, new incentives are developed for farmers to deploy practices that are beneficial for climate, water, soil, air, and biodiversity. Such practices include establishment of multifunctional biomass production systems, designed to reduce environmental impacts while providing biomass for food, feed, bioenergy, and other biobased products. Here, we model three scenarios of large-scale deployment for two such systems, riparian buffers and windbreaks, across over 81,000 landscapes in Europe, and quantify the corresponding areas, biomass output, and environmental benefits. The results show that these systems can effectively reduce nitrogen emissions to water and soil loss by wind erosion, while simultaneously providing substantial environmental co-benefits, having limited negative effects on current agricultural production. This kind of beneficial land-use change using strategic perennialization is important for meeting environmental objectives while advancing towards a sustainable bioeconomy.


2021 ◽  
Vol 13 (3) ◽  
pp. 1426
Author(s):  
Delu Wang ◽  
Xun Xue ◽  
Yadong Wang

The comprehensive and accurate monitoring of coal power overcapacity is the key link and an important foundation for the prevention and control of overcapacity. The previous research fails to fully consider the impact of the industry correlation effect; making it difficult to reflect the state of overcapacity accurately. In this paper; we comprehensively consider the fundamentals; supply; demand; economic and environmental performance of the coal power industry and its upstream; downstream; competitive; and complementary industries to construct an index system for assessing coal power overcapacity risk. Besides; a new evaluation model based on a correlation-based feature selection-association rules-data envelopment analysis (CFS-ARs-DEA) integrated algorithm is proposed by using a data-driven model. The results show that from 2008 to 2017; the risk of coal power overcapacity in China presented a cyclical feature of “decline-rise-decline”, and the risk level has remained high in recent years. In addition to the impact of supply and demand; the environmental benefits and fundamentals of related industries also have a significant impact on coal power overcapacity. Therefore; it is necessary to monitor and govern coal power overcapacity from the overall perspective of the industrial network, and coordinate the advancement of environmental protection and overcapacity control.


2021 ◽  
pp. 1-12
Author(s):  
Zou Xiaohong ◽  
Chen Jinlong ◽  
Gao Shuanping

The shared supply chain model has provided new ideas for solving contradictions between supply and demand for large-scale standardized production by manufacturers and personalized demands of consumers. On the basis of a platform network effect perspective, this study constructs an evolutionary game model of value co-creation behavior for a shared supply chain platform and manufacturers, analyzes their evolutionary stable strategies, and uses numerical simulation analysis to further verify the model. The results revealed that the boundary condition for manufacturers to participate in value co-creation on a shared supply chain platform is that the net production cost of the manufacturers’ participation in the platform value co-creation must be less than that of nonparticipation. In addition, the boundary condition for the shared supply chain platform to actively participate in value co-creation is that the cost of the shared supply chain platform for active participation in value co-creation must be less than that of passive participation. Moreover, value co-creation behavior on the shared supply chain platform is a dynamic game interaction process between players with different benefit perceptions. Finally, the costs and benefits generated by the network effect can affect value co-creation on shared supply chain platforms.


Author(s):  
Brian Bush ◽  
Laura Vimmerstedt ◽  
Jeff Gonder

Connected and automated vehicle (CAV) technologies could transform the transportation system over the coming decades, but face vehicle and systems engineering challenges, as well as technological, economic, demographic, and regulatory issues. The authors have developed a system dynamics model for generating, analyzing, and screening self-consistent CAV adoption scenarios. Results can support selection of scenarios for subsequent computationally intensive study using higher-resolution models. The potential for and barriers to large-scale adoption of CAVs have been analyzed using preliminary quantitative data and qualitative understandings of system relationships among stakeholders across the breadth of these issues. Although they are based on preliminary data, the results map possibilities for achieving different levels of CAV adoption and system-wide fuel use and demonstrate the interplay of behavioral parameters such as how consumers value their time versus financial parameters such as operating cost. By identifying the range of possibilities, estimating the associated energy and transportation service outcomes, and facilitating screening of scenarios for more detailed analysis, this work could inform transportation planners, researchers, and regulators.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2832
Author(s):  
Andrzej J. Osiadacz ◽  
Małgorzata Kwestarz

The major optimization problem of the gas transmission system is to determine how to operate the compressors in a network to deliver a given flow within the pressure bounds while using minimum compressor power (minimum fuel consumption or maximum network efficiency). Minimization of fuel usage is a major objective to control gas transmission costs. This is one of the problems that has received most of the attention from both practitioners and researchers because of its economic impact. The article describes the algorithm of steady-state optimization of a high-pressure gas network of any structure that minimizes the operating cost of compressors. The developed algorithm uses the “sequential quadratic programming (SQP)” method. The tests carried out on the real network segment confirmed the correctness of the developed algorithm and, at the same time, proved its computational efficiency. Computational results obtained with the SQP method demonstrate the viability of this approach.


2021 ◽  
Author(s):  
Elisie Kåresdotter ◽  
Zahra Kalantari

<p>Wetlands as large-scale nature-based solutions (NBS) provide multiple ecosystem services of local, regional, and global importance. Knowledge concerning location and vulnerability of wetlands, specifically in the Arctic, is vital to understand and assess the current status and future potential changes in the Arctic. Using available high-resolution wetland databases together with datasets on soil wetness and soil types, we created the first high-resolution map with full coverage of Arctic wetlands. Arctic wetlands' vulnerability is assessed for the years 2050, 2075, and 2100 by utilizing datasets of permafrost extent and projected mean annual average temperature from HadGEM2-ES climate model outputs for three change scenarios (RCP2.6, 4.5, and 8.5). With approximately 25% of Arctic landmass covered with wetlands and 99% being in permafrost areas, Arctic wetlands are highly vulnerable to changes in all scenarios, apart from RCP2.6 where wetlands remain largely stable. Climate change threatens Arctic wetlands and can impact wetland functions and services. These changes can adversely affect the multiple services this sort of NBS can provide in terms of great social, economic, and environmental benefits to human beings. Consequently, negative changes in Arctic wetland ecosystems can escalate land-use conflicts resulting from natural capital exploitation when new areas become more accessible for use. Limiting changes to Arctic wetlands can help maintain their ecosystem services and limit societal challenges arising from thawing permafrost wetlands, especially for indigenous populations dependent on their ecosystem services. This study highlights areas subject to changes and provides useful information to better plan for a sustainable and social-ecological resilient Arctic.</p><p>Keywords: Arctic wetlands, permafrost thaw, regime shift vulnerability, climate projection</p>


Author(s):  
Wei Zhang ◽  
Yifan Dou

Problem definition: We study how the government should design the subsidy policy to promote electric vehicle (EV) adoptions effectively and efficiently when there might be a spatial mismatch between the supply and demand of charging piles. Academic/practical relevance: EV charging infrastructures are often built by third-party service providers (SPs). However, profit-maximizing SPs might prefer to locate the charging piles in the suburbs versus downtown because of lower costs although most EV drivers prefer to charge their EVs downtown given their commuting patterns and the convenience of charging in downtown areas. This conflict of spatial preferences between SPs and EV drivers results in high overall costs for EV charging and weak EV adoptions. Methodology: We use a stylized game-theoretic model and compare three types of subsidy policies: (i) subsidizing EV purchases, (ii) subsidizing SPs based on pile usage, and (iii) subsidizing SPs based on pile numbers. Results: Subsidizing EV purchases is effective in promoting EV adoptions but not in alleviating the spatial mismatch. In contrast, subsidizing SPs can be more effective in addressing the spatial mismatch and promoting EV adoptions, but uniformly subsidizing pile installation can exacerbate the spatial mismatch and backfire. In different situations, each policy can emerge as the best, and the rule to determine which side (SPs versus EV buyers) to subsidize largely depends on cost factors in the charging market rather than the EV price or the environmental benefits. Managerial implications: A “jigsaw-piece rule” is recommended to guide policy design: subsidizing SPs is preferred if charging is too costly or time consuming, and subsidizing EV purchases is preferred if charging is sufficiently fast and easy. Given charging costs that are neither too low nor too high, subsidizing SPs is preferred only if pile building downtown is moderately more expensive than pile building in the suburbs.


Author(s):  
Ziyi Ma ◽  
Joseph Y. J. Chow

We propose a bilevel transit network frequency setting problem in which the upper level consists of analytical route cost functions and the lower level is an activity-based market equilibrium derived using MATSim-NYC. The use of MATSim in the lower-level problem incorporates sensitivity of the design process to competition from other modes, including ride-hail, and can support large-scale optimization. The proposed method is applied to the existing Brooklyn bus network, which includes 78 bus routes, 650,000 passengers per day, 550 route-km, and 4,696 bus stops. MATSim-NYC modeling of the existing bus network has a ridership-weighted average error per route of 21%. The proposed algorithm is applied to a benchmark network and confirms their predicted 20% growth in ridership using their benchmark design. Applying our proposed algorithm to their network with 78 routes and 24 periods, we have a problem with 3,744 decision variables. The algorithm converged within 10 iterations to a delta of 0.064%. Compared with the existing scenario, we increased ridership by 20% and reduced operating cost by 25%. We improved the farebox recovery ratio from the existing 0.22 to 0.35, 0.06 more than the benchmark design. Analysis of mode substitution effects suggest that 2.5% of trips would be drawn from ride-hail while 74% would come from driving.


2021 ◽  
Vol 6 (11) ◽  
pp. 159
Author(s):  
Ricardo Infante Gomes ◽  
David Bastos ◽  
Catarina Brazão Farinha ◽  
Cinthia Maia Pederneiras ◽  
Rosário Veiga ◽  
...  

Construction and demolition wastes (CDW) are generated at a large scale and have a diversified potential in the construction sector. The replacement of natural aggregates (NA) with CDW recycled aggregates (RA) in construction materials, such as mortars, has several environmental benefits, such as the reduction in the natural resources used in these products and simultaneous prevention of waste landfill. Complementarily, CDW have the potential to capture CO2 since some of their components may carbonate, which also contributes to a decrease in global warming potential. The main objective of this research is to evaluate the influence of the exposure of CDW RA to CO2 produced in cement factories and its effect on mortars. Several mortars were developed with a volumetric ratio of 1:4 (cement: aggregate), with NA (reference mortar), CDW RA and CDW RA exposed to high levels of CO2 (CRA). The two types of waste aggregate were incorporated, replacing NA at 50% and 100% (in volume). The mortars with NA and non-carbonated RA and CRA from CDW were analysed, accounting for their performance in the fresh and hardened states in terms of workability, mechanical behaviour and water absorption by capillarity. It was concluded that mortars with CDW (both CRA and non-carbonated RA) generally present a good performance for non-structural purposes, although they suffer a moderate decrease in mechanical performance when NA is replaced with RA. Additionally, small improvements were found in the performance of the aggregates and mortars with CRA subjected to a CO2 curing for a short period (5 h), while a long carbonation period (5 d) led to a decrease in performance, contrary to the results obtained in the literature that indicate a significant increase in such characteristics. This difference could be because the literature focused on made-in-laboratory CDW aggregates, while, in this research, the wastes came from real demolition activities, and were thus older and more heterogeneous.


Sign in / Sign up

Export Citation Format

Share Document