Stereoselective Pharmacokinetics and Chiral Inversions of Some Chiral Hydroxy Group Drugs

2020 ◽  
Vol 21 (15) ◽  
pp. 1632-1644
Author(s):  
Fuxin Chen ◽  
Qiaoxiu Bai ◽  
Qingfeng Wang ◽  
Suying Chen ◽  
Xiaoxian Ma ◽  
...  

Background: Chiral safety, especially chiral drug inversion in vivo, is the top priority of current scientific research. Medicine researchers and pharmacists often ignore that one enantiomer will be converted or partially converted to another enantiomer when it is ingested in vivo. So that, in the context that more than 50% of the listed drugs are chiral drugs, it is necessary and important to pay attention to the inversion of chiral drugs. Methods: The metabolic and stereoselective pharmacokinetic characteristics of seven chiral drugs with one chiral center in the hydroxy group were reviewed in vivo and in vitro including the possible chiral inversion of each drug enantiomer. These seven drugs include (S)-Mandelic acid, RS-8359, Tramadol, Venlafaxine, Carvedilol, Fluoxetine and Metoprolol. Results: The differences in stereoselective pharmacokinetics could be found for all the seven chiral drugs, since R and S isomers often exhibit different PK and PD properties. However, not every drug has shown the properties of one direction or two direction chiral inversion. For chiral hydroxyl group drugs, the redox enzyme system may be one of the key factors for chiral inversion in vivo. Conclusion: In vitro and in vivo chiral inversion is a very complex problem and may occur during every process of ADME. Nowadays, research on chiral metabolism in the liver has the most attention, while neglecting the chiral transformation of other processes. Our review may provide the basis for the drug R&D and the safety of drugs in clinical therapy.

2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


2020 ◽  
Vol 16 ◽  
Author(s):  
Xi He ◽  
Wenjun Hu ◽  
Fanhua Meng ◽  
Xingzhou Li

Background: The broad-spectrum antiparasitic drug nitazoxanide (N) has been repositioned as a broad-spectrum antiviral drug. Nitazoxanide’s in vivo antiviral activities are mainly attributed to its metabolitetizoxanide, the deacetylation product of nitazoxanide. In reference to the pharmacokinetic profile of nitazoxanide, we proposed the hypotheses that the low plasma concentrations and the low system exposure of tizoxanide after dosing with nitazoxanide result from significant first pass effects in the liver. It was thought that this may be due to the unstable acyloxy bond of nitazoxanide. Objective: Tizoxanide prodrugs, with the more stable formamyl substituent attached to the hydroxyl group rather than the acetyl group of nitazoxanide, were designed with the thought that they might be more stable in plasma. It was anticipated that these prodrugs might be less affected by the first pass effect, which would improve plasma concentrations and system exposure of tizoxanide. Method: These O-carbamoyl tizoxanide prodrugs were synthesized and evaluated in a mouse model for pharmacokinetic (PK) properties and in an in vitro model for plasma stabilities. Results: The results indicated that the plasma concentration and the systemic exposure of tizoxanide (T) after oral administration of O-carbamoyl tizoxanide prodrugs were much greater than that produced by equimolar dosage of nitazoxanide. It was also found that the plasma concentration and the systemic exposure of tizoxanide glucuronide (TG) were much lower than that produced by nitazoxanide. Conclusion: Further analysis showed that the suitable plasma stability of O-carbamoyl tizoxanide prodrugs is the key factor in maximizing the plasma concentration and the systemic exposure of the active ingredient tizoxanide.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Saikat Bhattacharya ◽  
Michaella J. Levy ◽  
Ning Zhang ◽  
Hua Li ◽  
Laurence Florens ◽  
...  

AbstractHeterogeneous ribonucleoproteins (hnRNPs) are RNA binding molecules that are involved in key processes such as RNA splicing and transcription. One such hnRNP protein, hnRNP L, regulates alternative splicing (AS) by binding to pre-mRNA transcripts. However, it is unclear what factors contribute to hnRNP L-regulated AS events. Using proteomic approaches, we identified several key factors that co-purify with hnRNP L. We demonstrate that one such factor, the histone methyltransferase SETD2, specifically interacts with hnRNP L in vitro and in vivo. This interaction occurs through a previously uncharacterized domain in SETD2, the SETD2-hnRNP Interaction (SHI) domain, the deletion of which, leads to a reduced H3K36me3 deposition. Functionally, SETD2 regulates a subset of hnRNP L-targeted AS events. Our findings demonstrate that SETD2, by interacting with Pol II as well as hnRNP L, can mediate the crosstalk between the transcription and the splicing machinery.


2020 ◽  
Vol 21 (2) ◽  
pp. 470 ◽  
Author(s):  
Bashar Al-Zohily ◽  
Asma Al-Menhali ◽  
Salah Gariballa ◽  
Afrozul Haq ◽  
Iltaf Shah

In this review, we discuss the sources, formation, metabolism, function, biological activity, and potency of C3-epimers (epimers of vitamin D). We also determine the role of epimerase in vitamin D-binding protein (DBP) and vitamin D receptors (VDR) according to different subcellular localizations. The importance of C3 epimerization and the metabolic pathway of vitamin D at the hydroxyl group have recently been recognized. Here, the hydroxyl group at the C3 position is orientated differently from the alpha to beta orientation in space. However, the details of this epimerization pathway are not yet clearly understood. Even the gene encoding for the enzyme involved in epimerization has not yet been identified. Many published research articles have illustrated the biological activity of C3 epimeric metabolites using an in vitro model, but the studies on in vivo models are substantially inadequate. The metabolic stability of 3-epi-1α,25(OH)2D3 has been demonstrated to be higher than its primary metabolites. 3-epi-1 alpha, 25 dihydroxyvitamin D3 (3-epi-1α,25(OH)2D3) is thought to have fewer calcemic effects than non-epimeric forms of vitamin D. Some researchers have observed a larger proportion of total vitamin D as C3-epimers in infants than in adults. Insufficient levels of vitamin D were found in mothers and their newborns when the epimers were not included in the measurement of vitamin D. Oral supplementation of vitamin D has also been found to potentially cause increased production of epimers in mice but not humans. Moreover, routine vitamin D blood tests for healthy adults will not be significantly affected by epimeric interference using LC–MS/MS assays. Recent genetic models also show that the genetic determinants and the potential factors of C3-epimers differ from those of non-C3-epimers.Most commercial immunoassays techniques can lead to inaccurate vitamin D results due to epimeric interference, especially in infants and pregnant women. It is also known that the LC–MS/MS technique can chromatographically separate epimeric and isobaric interference and detect vitamin D metabolites sensitively and accurately. Unfortunately, many labs around the world do not take into account the interference caused by epimers. In this review, various methods and techniques for the analysis of C3-epimers are also discussed. The authors believe that C3-epimers may have an important role to play in clinical research, and further research is warranted.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6012 ◽  
Author(s):  
Rumana Ahmad

BackgroundSolanum nigrum(black nightshade;S. nigrum), a member of family Solanaceae, has been endowed with a heterogeneous array of secondary metabolites of which the steroidal glycoalkaloids (SGAs) and steroidal saponins (SS) have vast potential to serve as anticancer agents. Since there has been much controversy regarding safety of use of glycoalkaloids as anticancer agents, this area has remained more or less unexplored. Cytoskeletal proteins like actin play an important role in maintaining cell shape, synchronizing cell division, cell motility, etc. and along with their accessory proteins may also serve as important therapeutic targets for potential anticancer candidates. In the present study, glycoalkaloids and saponins fromS. nigrumwere screened for their interaction and binding affinity to cytoskeletal proteins, using molecular docking.MethodsBioactivity score and Prediction of Activity Spectra for Substances (PASS) analysis were performed using softwares Molinspiration and Osiris Data Explorer respectively, to assess the feasibility of selected phytoconstituents as potential drug candidates. The results were compared with two standard reference drugs doxorubicin hydrochloride (anticancer) and tetracycline (antibiotic). Multivariate data obtained were analyzed using principal component analysis (PCA).ResultsDocking analysis revealed that the binding affinities of the phytoconstituents towards the target cytoskeletal proteins decreased in the order coronin>villin>ezrin>vimentin>gelsolin>thymosin>cofilin. Glycoalkaloid solasonine displayed the greatest binding affinity towards the target proteins followed by alpha-solanine whereas amongst the saponins, nigrumnin-I showed maximum binding affinity. PASS Analysis of the selected phytoconstituents revealed 1 to 3 violations of Lipinski’s parameters indicating the need for modification of their structure-activity relationship (SAR) for improvement of their bioactivity and bioavailability. Glycoalkaloids and saponins all had bioactivity scores between −5.0 and 0.0 with respect to various receptor proteins and target enzymes. Solanidine, solasodine and solamargine had positive values of druglikeness which indicated that these compounds have the potential for development into future anticancer drugs. Toxicity potential evaluation revealed that glycoalkaloids and saponins had no toxicity, tumorigenicity or irritant effect(s). SAR analysis revealed that the number, type and location of sugar or the substitution of hydroxyl group on alkaloid backbone had an effect on the activity and that the presence of α-L-rhamnopyranose sugar at C-2 was critical for a compound to exhibit anticancer activity.ConclusionThe present study revealed some cytoskeletal target(s) forS. nigrumphytoconstituents by docking analysis that have not been previously reported and thus warrant further investigations bothin vitroandin vivo.


2016 ◽  
Vol 2 (4) ◽  
pp. e1501780 ◽  
Author(s):  
Qing Zhao ◽  
Yang Zhang ◽  
Gang Wang ◽  
Lionel Hill ◽  
Jing-Ke Weng ◽  
...  

Wogonin and baicalein are bioactive flavones in the popular Chinese herbal remedy Huang-Qin (Scutellaria baicalensisGeorgi). These specialized flavones lack a 4′-hydroxyl group on the B ring (4′-deoxyflavones) and induce apoptosis in a wide spectrum of human tumor cells in vitro and inhibit tumor growth in vivo in different mouse tumor models. Root-specific flavones (RSFs) fromScutellariahave a variety of reported additional beneficial effects including antioxidant and antiviral properties. We describe the characterization of a new pathway for the synthesis of these compounds, in which pinocembrin (a 4′-deoxyflavanone) serves as a key intermediate. Although two genes encoding flavone synthase II (FNSII) are expressed in the roots ofS.baicalensis, FNSII-1 has broad specificity for flavanones as substrates, whereas FNSII-2 is specific for pinocembrin. FNSII-2 is responsible for the synthesis of 4′-deoxyRSFs, such as chrysin and wogonin, wogonoside, baicalein, and baicalin, which are synthesized from chrysin. A gene encoding a cinnamic acid–specific coenzyme A ligase (SbCLL-7), which is highly expressed in roots, is required for the synthesis of RSFs by FNSII-2, as demonstrated by gene silencing. A specific isoform of chalcone synthase (SbCHS-2) that is highly expressed in roots producing RSFs is also required for the synthesis of chrysin. Our studies reveal a recently evolved pathway for biosynthesis of specific, bioactive 4′-deoxyflavones in the roots ofS.baicalensis.


Toxins ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 283
Author(s):  
Abraham Méndez-Albores ◽  
René Escobedo-González ◽  
Juan Manuel Aceves-Hernández ◽  
Perla García-Casillas ◽  
María Inés Nicolás-Vázquez ◽  
...  

Employing theoretical calculations with density functional theory (DFT) using the B3LYP/6-311++G(d,p) functional and basis set, the interaction of the aflatoxin B1 (AFB1) molecule and the functional groups present in the Pyracantha koidzumii biosorbent was investigated. Dissociation free energy and acidity equilibrium constant values were obtained theoretically both in solution (water) and gas phases. Additionally, the molecular electrostatic potential for the protonated molecules was calculated to verify the reactivity. Thus, methanol (hydroxyl group), methylammonium ion (amino group), acetate ion (carboxyl group), and acetone (carbonyl group), were used as representatives of the substrates present in the biomass; these references were considered using the corresponding protonated or unprotonated forms at a pH value of 5. The experimental infrared spectrophotometric data suggested the participation of these functional groups in the AFB1 biosorption process, indicating that the mechanism was dominated by electrostatic interactions between the charged functional groups and the positively charged AFB1 molecule. The theoretical determination indicated that the carboxylate ion provided the highest interaction energy with the AFB1 molecule. Consequently, an enriched biosorbent with compounds containing carboxyl groups could improve the yield of the AFB1 adsorption when using in vitro and in vivo trials.


1992 ◽  
Vol 38 (2) ◽  
pp. 85-91 ◽  
Author(s):  
Anthony J. Clarke ◽  
Claude Dupont

Bacterial cell walls and their structural units, particularly peptidoglycan, induce a vast variety of biological effects in host organisms. The pathobiological effects of peptidoglycan are greatly enhanced by various modifications and substitutions to its basic composition and structure. One such modification is the presence of acetyl moieties at theC-6 hydroxyl group of N-acetylmuramyl residues, and to date, 11 species of eubacteria, including some important human pathogens, such as Neisseria gonorrhoeae, Proteus mirabilis, and Staphylococcus aureus, are known to possess O-acetylated peptidoglycan. This review addresses the influence of O-acetylation of peptidoglycan on its resistance to degradation both in vitro and in vivo, the clinical importance of the modification, and the currently held views on the pathway for its biosynthesis. Key words: peptidoglycan, murein, O-acetylation, lysozyme, arthritis.


2018 ◽  
Vol 314 (5) ◽  
pp. F915-F920 ◽  
Author(s):  
Mohammed Z. Ferdaus ◽  
James A. McCormick

Autosomal dominant mutations in cullin-3 ( Cul3) cause the most severe form of familial hyperkalemic hypertension (FHHt). Cul3 mutations cause skipping of exon 9, which results in an internal deletion of 57 amino acids from the CUL3 protein (CUL3-∆9). The precise mechanism by which this altered form of CUL3 causes FHHt is controversial. CUL3 is a member of the cullin-RING ubiquitin ligase family that mediates ubiquitination and thus degradation of cellular proteins, including with-no-lysine [K] kinases (WNKs). In CUL3-∆9-mediated FHHt, proteasomal degradation of WNKs is abrogated, leading to overactivation of the WNK targets sterile 20/SPS-1 related proline/alanine-rich kinase and oxidative stress-response kinase-1, which directly phosphorylate and activate the thiazide-sensitive Na+-Cl− cotransporter. Several groups have suggested different mechanisms by which CUL3-∆9 causes FHHt. The majority of these are derived from in vitro data, but recently the Kurz group (Schumacher FR, Siew K, Zhang J, Johnson C, Wood N, Cleary SE, Al Maskari RS, Ferryman JT, Hardege I, Figg NL, Enchev R, Knebel A, O’Shaughnessy KM, Kurz T. EMBO Mol Med 7: 1285–1306, 2015) described the first mouse model of CUL3-∆9-mediated FHHt. Analysis of this model suggested that CUL3-∆9 is degraded in vivo, and thus Cul3 mutations cause FHHt by inducing haploinsufficiency. We recently directly tested this model but found that other dominant effects of CUL3-∆9 must contribute to the development of FHHt. In this review, we focus on our current knowledge of CUL3-∆9 action gained from in vitro and in vivo models that may help unravel this complex problem.


2019 ◽  
Vol 21 (1) ◽  
pp. 31-40
Author(s):  
Mariné Ortiz-Magdaleno DDS, MSc, PhD ◽  
Ana Isabel Romo-Tobías DDS ◽  
Fernando Romo-Ramírez DDS, MSc ◽  
Diana María Escobar DDS, MSc, PhD ◽  
Héctor Flores-Reyes DDS, MSc, PhD ◽  
...  

The success of tissue engineering in combination with tissue regeneration depends on the behavior and cellular activity in the biological processes developed within a structure that functions as a support, better known as scaffolds, or directly at the site of the injury. The cell-cell and cell-biomaterial interaction are key factors for the induction of a specific cell behavior, together with the bioactive factors that allow the formation of the desired tissue. Mesenchymal Stem Cells (MSC) can be isolated from the umbilical cord and bone marrow; however, the behavior of Dental Pulp Stem Cells (DPSC) has been shown to have a high potential for the formation of bone tissue, and these cells have even been able to induce the process of angiogenesis. Advances in periodontal regeneration, dentin-pulp complex, and craniofacial bone defects through the induction of MSC obtained from tooth structures in in vitro-in vivo studies have permitted the obtaining of clinical evidence of the achievements obtained to date.


Sign in / Sign up

Export Citation Format

Share Document