Photon Emission Spectra of FETs as Obtained by InGaAs Detector

Author(s):  
Arkadiusz Glowacki ◽  
Christian Boit ◽  
Yoshiyuki Yokoyama ◽  
Philippe Perdu

Abstract In this work we present spectrally resolved photon emission microscopy (SPEM) measurements for short-channel FETs acquired through the backside of the Si substrate using InGaAs detector. Two spectrum resolution methods have been used: continuous using a prism and discrete using a set of interference band-pass filters. The photon emission (PE) spectra have been corrected for the background / noise of the detector; they have been calibrated with respect to the system optical transmission function and corrected for the absorption on free carriers in the remaining layer of Si substrate. We discuss all the standardization aspects thoroughly as they are crucial in order to obtain correct device-intrinsic PE spectral information. Finally, we present the spectral results for FET devices operated in various operating conditions.

Author(s):  
Arkadiusz Glowacki ◽  
Carlo Pagano ◽  
Christian Boit ◽  
Yoshiyuki Yokoyama ◽  
Arkadiusz Jankowski ◽  
...  

Abstract In this work we present spectrally resolved photon emission microscopy (SPEM) measurements originating from short-channel MOSFETs acquired through the backside of the silicon substrate. Two commonly used detectors have been chosen for the detection of electroluminescence (EL) in the visible and near-infrared spectral regime, namely Si-CCD and InGaAs. As the backside photon emission (PE) inspection is strongly influenced by the absorption of light in a substrate material, the SPEM experiments have been carried out through thinned silicon layers as obtained by mechanical grinding and local focused-ion-beam (FIB) assisted Si material removal. Intrinsic Si absorption (generation of electron-hole pairs) and absorption on free carriers have been modeled to be able to calibrate experimental results and obtain devicerelated PE spectra. The results show no evidences of specific transitions and lead to a conclusion that photon emission from MOSFETs is fully electrical field related.


Author(s):  
Arkadiusz Glowacki ◽  
Christian Boit ◽  
Richard Lossy ◽  
Joachim Würfl

Abstract Non-degraded and degraded AlGaN/GaN HEMT devices have been characterized electrically and investigated in various operating modes using integral and spectrally resolved photon emission (PE). In degraded devices the PE dependence on the gate voltage differs from the non-degraded devices. Various types of dependencies on the gate voltage have been identified when investigating local degradation sites. PE spectroscopy was performed at various bias conditions. For both devices broad spectra have been obtained in a wavelength regime from visible to near-infrared, including local performance variations. Signatures of the degradation have been determined in the electrical characterization, in integral PE distribution and in the PE spectrum.


Author(s):  
M. Palaniappan ◽  
V. Ng ◽  
R. Heiderhoff ◽  
J.C.H. Phang ◽  
G.B.M. Fiege ◽  
...  

Abstract Light emission and heat generation of Si devices have become important in understanding physical phenomena in device degradation and breakdown mechanisms. This paper correlates the photon emission with the temperature distribution of a short channel nMOSFET. Investigations have been carried out to localize and characterize the hot spots using a spectroscopic photon emission microscope and a scanning thermal microscope. Frontside investigations have been carried out and are compared and discussed with backside investigations. A method has been developed to register the backside thermal image with the backside illuminated image.


1999 ◽  
Vol 4 (S1) ◽  
pp. 697-702 ◽  
Author(s):  
Gabriela E. Bunea ◽  
S.T. Dunham ◽  
T.D. Moustakas

Static induction transistors (SITs) are short channel FET structures which are suitable for high power, high frequency and high temperature applications. GaN has particularly favorable properties for SIT operation. However, such a device has not yet been fabricated. In this paper we report simulation studies on GaN static induction transistors over a range of device structures and operating conditions. The transistor was modeled with coupled drift-diffusion and heat-flow equations. We found that the performance of the device depends sensitively on the thermal boundary conditions, as self-heating effects limit the maximum voltage swing.


2003 ◽  
Vol 5 (4) ◽  
pp. 239-242 ◽  
Author(s):  
Marian Elbanowski ◽  
Krzysztof Staninski ◽  
Malgorzata Kaczmarek ◽  
Stefan Lis

Chemiluminescence (CL) of selected inorganic reaction systems, generating ultraweak photon emission, has been studied. The kinetics of the systems and their emission spectra have been characterised by measurements with the use of the stationary and the flow methods of CL recording. The systems studied contained cations at different oxidation degree such asFe2+\3+,Cu+\2+,Co2+\3+,Eu2+\3+,CLO−anions and hydrogen peroxide without organic sensitisers. On the basis of the analysis of the spectra, in particular systems emitters have been identified and mechanisms of the reactions have been proposed. The effect of carbonate and azide ions and propylene carbonate on the yield of CL and spectral characterisation of the systems studied has been evidenced and discussed. A possibility of the application of the systemsEu3+\N3−\H2O2andCo2+\propylene carbonate\H2O2for analytical purposes has been considered.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5947
Author(s):  
Joseph Biagio McLaughlin ◽  
Giacomo Gallina ◽  
Fabrice Retière ◽  
Austin De St. De St. Croix ◽  
Pietro Giampa ◽  
...  

In this paper, we report on the photon emission of Silicon Photomultipliers (SiPMs) from avalanche pulses generated in dark conditions, with the main objective of better understanding the associated systematics for next-generation, large area, SiPM-based physics experiments. A new apparatus for spectral and imaging analysis was developed at TRIUMF and used to measure the light emitted by the two SiPMs considered as photo-sensor candidates for the nEXO neutrinoless double-beta decay experiment: one Fondazione Bruno Kessler (FBK) VUV-HD Low Field (LF) Low After Pulse (Low AP) (VUV-HD3) SiPM and one Hamamatsu Photonics K.K. (HPK) VUV4 Multi-Pixel Photon Counter (MPPC). Spectral measurements of their light emissions were taken with varying over-voltage in the wavelength range of 450–1020 nm. For the FBK VUV-HD3, at an over-voltage of 12.1±1.0 V, we measured a secondary photon yield (number of photons (γ) emitted per charge carrier (e−)) of (4.04±0.02)×10−6γ/e−. The emission spectrum of the FBK VUV-HD3 contains an interference pattern consistent with thin-film interference. Additionally, emission microscopy images (EMMIs) of the FBK VUV-HD3 show a small number of highly localized regions with increased light intensity (hotspots) randomly distributed over the SiPM surface area. For the HPK VUV4 MPPC, at an over-voltage of 10.7±1.0 V, we measured a secondary photon yield of (8.71±0.04)×10−6γ/e−. In contrast to the FBK VUV-HD3, the emission spectra of the HPK VUV4 did not show an interference pattern—likely due to a thinner surface coating. The EMMIs of the HPK VUV4 also revealed a larger number of hotspots compared to the FBK VUV-HD3, especially in one of the corners of the device. The photon yield reported in this paper may be limited if compared with the one reported in previous studies due to the measurement wavelength range, which is only up to 1020 nm.


Author(s):  
Ivo Vogt ◽  
Christian Boit ◽  
Tomonori Nakamura ◽  
Babak Motamedi

Abstract This paper provides a detailed analysis on the optical detection of temperature effects in FinFETs via (spectral) photon emission microscopy (SPEM/PEM) with InGaAs detector and electro-optical frequency mapping (EOFM, similar to LVI) for 14/16 nm Qualcomm Inc. FinFETs. It analyzes physical parameters of the FinFETs such as electron temperature and the relation between signal curve and operating condition of the device by photon emission slopes and spectra. The paper also traces device self-heating effects within the FinFETs by means of EOFM signal courses. With EOFM it was possible to detect self-heating effects of the FinFETs providing a further method to estimate device and substrate heating. Results showed that it is possible to obtain valuable device parameter information (for example, electron temperatures and self-heating) via optical investigations (PEM/ EOFM), which are not accessible electrically in modern integrated circuits. This information adds further details to device reliability and functionality approximations.


1994 ◽  
Vol 72 (3) ◽  
pp. 821-827 ◽  
Author(s):  
Eunsook Hwang ◽  
Paul J. Dagdigian ◽  
Millard H. Alexander

Spectrally resolved bound–free fluorescence emission spectra for the excitation of several vibrational levels in the excited B2Σ+ electronic state of the van der Waals molecule 11BAr are presented. This excited state emits to the ground X2Π and low-lying A2Σ+ states, both of which correlate with the ground state atomic asymptote B(2p2P) + Ar. Because of the large differences in equilibrium internuclear separations, the emission occurs mainly to the repulsive walls. In order to gain more information on this portion of the potential energy curves, the experimental emission spectra were compared with simulated spectra derived from ab initio calculated B–Ar interaction potentials. The simulated spectra reproduce the experimental spectra well if the lower-state potential energy curves are shifted slightly inward. This discrepancy is consistent with our previous observation that the ab initio calculations slightly overestimate the vibrationally averaged internuclear separation, which we determined experimentally. This reflects the difficulty of accurately calculating weak van der Waals interaction energies.


Sign in / Sign up

Export Citation Format

Share Document