scholarly journals Volatile constituents, in vitro and in silico anti-hyaluronidase activity of the essential oil from Gardenia carinata Wall. ex Roxb. flowers

2019 ◽  
Vol 9 (6) ◽  
pp. 4649-4654 ◽  

Fresh flowers of Gardenia carinata Wall. ex Roxb. were collected from Nonthaburi, Thailand. These plant materials were extracted by steam distillation extraction. The results showed that the percentage of essential oil from steam distillation was 0.16. The extracts obtained were subjected to gas chromatography/mass spectrometry for the identification of volatile constituents. The essential oil extracted by steam distillation was characterized by the presence of trans-geraniol (1, 19.9 %) and farnesol (2, 13.2 %) as the main component. The essential oil from flowers of G. carinata and two main components were evaluated for in vitro hyaluronidase inhibitory activity using fluorometric method and compared to a reference hyaluronidase inhibitor (6-O-palmitoylascorbic acid). The results were indicated that essential oil gave the mild inhibitory activity on hyaluronidase with IC50 of 1200.4 ± 21.1 g/mL as opposed to 6-O-palmitoylascorbic acid (IC50 =186.1 ± 3.9 g/mL). In the case of two main components, trans-geraniol (1) and farnesol (2) displayed moderate hyaluronidase inhibition activity with IC50 value at 535.7 ± 42.2 and 292.9 ± 23.4 g/mL, respectively. Additionally, in silico docking study of main component studies exhibited several important interactions between 1 and 2 and hyaluronidase binding site. Above finding confirmed the anti-hyaluronidase potential of G. carinata flowers.

2018 ◽  
Vol 7 (9) ◽  
pp. 283 ◽  
Author(s):  
Sherif Hassan ◽  
Kateřina Berchová-Bímová ◽  
Miroslava Šudomová ◽  
Milan Malaník ◽  
Karel Šmejkal ◽  
...  

Thymus bovei Benth. (TB) is an important plant in the traditional medicine of the Mediterranean region. This study investigates the health-promoting properties of TB essential oil (TB-EO) for its possible use in clinical practice with regards to its cytotoxic, anti-herpes simplex virus type 2 (HSV-2), and antihypertensive (through inhibition of human angiotensin-converting enzyme; ACE) properties. The phytochemical profile of EO (99.9%) was analyzed by Gas Chromatography with Flame-Ionization Detection (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS). In this study, all biological methods were performed at the level of in vitro studies. The results showed that TB-EO exerted remarked cytotoxic properties against human cervical carcinoma cells, colon cancer cells, and lung adenocarcinoma cells with the half-maximal inhibitory concentration (IC50) values of 7.22, 9.30, and 8.62 µg/mL, respectively, in comparison with that of standard anticancer drug cisplatin with IC50 values of 4.24, 5.21, and 5.43 µg/mL, respectively. Fascinatingly, TB-EO showed very weak cytotoxicity on the healthy human fetal lung fibroblast cells with an IC50 value of 118.34 µg/mL compared with that of cisplatin (IC50 = 10.08 µg/mL). TB-EO, its main component geraniol, TB-EO combined with acyclovir (ACV) along with standard ACV, have displayed pronounced inhibitory properties against the replication of HSV-2 with the half-maximal effective concentration (EC50) values of 2.13, 1.92, 0.81 and 1.94 µg/mL, respectively, with corresponding selectivity indices (SI) 98.59, 109.38, 259.26 and 108.25, respectively. TB-EO and geraniol at a concentration of 15 µg/mL showed prominent inhibitory activities against ACE with % of inhibition 95.4% and 92.2%, respectively, compared with that of standard inhibitor captopril (99.8%; 15 µg/mL). Molecular docking studies were performed to unveil the mechanism of action of geraniol as well as structural parameters necessary for anti-HSV-2 activity (through the inhibition of HSV-2 protease) and ACE inhibition. This is the first report on the chemical composition of Egyptian TB-EO along with the above-mentioned biological activities. Our results may be considered as novel findings in the course of a search for new and active anticancer, anti-HSV-2 and antihypertensive agents, and expand the medicinal value of this plant and its phytochemicals in clinical practice.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7372
Author(s):  
Ahmed I. Foudah ◽  
Mohammed H. Alqarni ◽  
Aftab Alam ◽  
Mohammad Ayman Salkini ◽  
Pravej Alam ◽  
...  

The aim of this study was to explore the composition and evaluate the in silico and in vitro antioxidants and antimicrobial and anti-inflammatory effects of Apium graveolens var. dulce leaves essential oil (AGO) collected from Al-Kharj (Saudi Arabia). AGO was isolated using the hydro-distillation method, and its composition was studied using gas-chromatography-mass Spectrometry (GC–MS), antimicrobial activities using well diffusion assay, and antioxidant and anti-inflammatory activities using spectrophotometric methods. The pharmacological activities of their major compounds were predicted using PASS (prediction of activity spectra for substances) and drug-likening properties by ADME (absorption, distribution, metabolism, and excretion) through web-based online tools. Isocnidilide (40.1%) was identified as the major constituent of AGO along with β-Selinene, Senkyunolide A, Phytyl acetate, and 3-Butylphthalide. AGO exhibited a superior antibacterial activity, and the strongest activity was detected against Gram-positive bacteria and Candida albicans. Additionally, it exhibited a weaker antioxidant potential and stronger anti-inflammatory effects. PASS prediction supported the pharmacological finding, whereas ADMET revealed the safety of AGO. The molecular docking of isocnidilide was carried out for antibacterial (DNA gyrase), antioxidant (tyrosinase), and anti-inflammatory (cyclooxygenase-2) activities. The docking simulation results were involved hydrophilic interactions and demonstrated high binding affinity of isocnidilide for anti-inflammatory protein (cycloxygenase-2). The presence of isocnidilide makes AGO a potential anti-inflammatory and antimicrobial agent. AGO, and its major metabolite isocnidilide, may be a suitable candidate for the future drug development.


2018 ◽  
Vol 73 (9-10) ◽  
pp. 353-360 ◽  
Author(s):  
Nursenem Karaca ◽  
Betül Demirci ◽  
Fatih Demirci

Abstract Lavandula stoechas subsp. stoechas and Mentha spicata subsp. spicata are used for the treatment of sinusitis in Turkish folk medicine. The components of essential oils obtained by hydrodistillation were determined by gas chromatography-flame ionization detector (GC-FID), gas chromatography/mass spectrometry (GC/MS), and thin layer chromatography (TLC). Major components of L. stoechas and M. spicata oils were determined as camphor (46.7%) and carvone (60.6%), respectively. The antibacterial activity of essential oils and their main components were tested against the common selected sinusitis pathogens Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, Haemophilus influenzae, Moraxella catarrhalis, and Pseudomonas aeruginosa using in vitro agar diffusion, microdilution, and vapor diffusion methods. As a result, the tested plant materials, which are locally and natively used against sinusitis, were relatively mild antibacterial (in vitro MICs 310–1250 μg/mL) in action. To use essential oils and their components safely in sinusitis therapy, further detailed in vivo experiments are needed to support their efficacy.


2021 ◽  
Vol 11 (2) ◽  
pp. 3470-3479

Leaves of Annona muricata are commonly used for treating diabetes. This study was conducted to investigate the molecular mechanisms involved in the antidiabetic properties of leaves of Annona muricata. Leaves of Annona muricata were extracted separately with H2O, hydromethanol (50% methanol), methanol, ethylacetate, and n-butanol. Chemical characterization of the extracts was performed by spectrophotometry and Gas chromatography-Mass Spectrometry (GC-MS) techniques. Biological activity was determined by α-amylase inhibition assays and molecular docking. The hydromethanol extract had a total phenolics concentration of 117.00±0.59 µg GAE/mg extract whereas; flavonoids were most abundant in the n-butanol extract accounting for 29.34±8.87 µg QE/mg extract. The n-butanol extract had the best FRAP value of 41.17±0.57 Vit C eqv mM, which was significantly higher than the value of the vitamin C reference. Estimated IC50 for all the extracts did not differ significantly but was significantly higher than the reference compound quercetin. All extracts inhibited α-amylase in vitro albeit significantly lower than acarbose. The hydromethanol extract had the highest inhibitory activity (53.31 ± 0.33%). Furthermore, chemical profiling of the hydromethanol extract revealed the presence of a variety of bioactive compounds. In silico analysis by molecular docking of the compounds identified by GC-MS on α-amylase revealed that the compounds had robust molecular interactions orchestrated by H-bonding and hydrophobic interactions. From the results, it can be concluded that extracts of Annona muricata possess antioxidant phytochemicals that inhibit α-amylase. Therefore, the results justify the use of the plant for the treatment of diabetes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tahereh Jamali ◽  
Gholamreza Kavoosi ◽  
Yousef Jamali ◽  
Saeed Mortezazadeh ◽  
Susan K. Ardestani

AbstractWe aimed to explore and compare new insights on the pharmacological potential of Oliveria decumbence essential oil (OEO) and its main components highlighting their antioxidant activity in-vitro, in-vivo, and in-silico and also cytotoxic effects of OEO against A549 lung cancer cells. At first, based on GC–MS analysis, thymol, carvacrol, p-cymene, and γ-terpinene were introduced as basic ingredients of OEO and their in-vitro antioxidant capacity was considered by standard methods. Collectively, OEO exhibited strong antioxidant properties even more than its components. In LPS-stimulated macrophages treated with OEO, the reduction of ROS (Reactive-oxygen-species) and NO (nitric-oxide) and down-regulation of iNOS (inducible nitric-oxide-synthase) and NOX (NADPH-oxidase) mRNA expression was observed and compared with that of OEO components. According to the results, OEO, thymol, and carvacrol exhibited the highest radical scavenging potency compared to p-cymene, and γ-terpinene. In-silico Molecular-Docking and Molecular-Dynamics simulation indicated that thymol and carvacrol but no p-cymene and γ-terpinene may establish coordinative bonds in iNOS active site and thereby inhibit iNOS. However, they did not show any evidence for NOX inhibition. In the following, MTT assay showed that OEO induces cytotoxicity in A549 cancer cells despite having a limited effect on L929 normal cells. Apoptotic death and its dependence on caspase-3 activity and Bax/Bcl2 ratio in OEO-treated cells were established by fluorescence microscopy, flow cytometry, colorimetric assay, and western blot analysis. Additionally, flow cytometry studies demonstrated increased levels of ROS in OEO-treated cells. Therefore, OEO, despite showing antioxidant properties, induces apoptosis in cancer cells by increasing ROS levels. Collectively, our results provided new insight into the usage of OEO and main components, thymol, and carvacrol, into the development of novel antioxidant and anti-cancer agents.


2020 ◽  
Vol 32 (1) ◽  
pp. 1
Author(s):  
Henny Zaliyana Ahmad Kamal ◽  
Tuan Nadrah Naim Tuan Ismail ◽  
Erry Mochamad Arief ◽  
Kannan Thirumulu Ponnuraj

Introduction: Cymbopogon nardus is a strong aromatic plant with relevant medicinal properties due to its essential chemical compounds and its potential therapeutic effects. This study was aimed to evaluate the antimicrobial activities of citronella essential oil against several oral pathogens and to identify the volatile compounds. Methods: The essential oil of C. nardus was purchased from Excellent Wisdom Sdn. Bhd., Malaysia. The source of raw material was collected from Malacca, the southern region of Malaysia, and the company made its taxonomic identification. An experimental in-vitro study was conducted on the essential oil processed from C. nardus genus Cymbopogon of Poaceae family. The in-vitro antimicrobial activities of C. nardus essential oil were evaluated against Streptococcus mutans (ATCC 25175), Streptococcus sobrinus (ATCC 33478), and Candida albicans (ATCC 10231) using agar well diffusion assay. The identification of the volatile compounds was performed using gas chromatography-mass spectrometry (GC-MS). Results: The C. nardus essential oil exhibited inhibitory activity against C. albicans at the concentration of 6.25%, whereby the inhibitory activity against S. mutans and S. sobrinus began at the concentration of 25%. The antimicrobial activity of C. nardus essential oil was statistically significant at the concentration of 50% in all tested pathogens. The GC-MS analysis of the C. nardus essential oil revealed the presence of few constituents, which include monoterpenes, diterpenes, sesquiterpenes and phenolic compounds. Monoterpenes were the major identified terpenoids and contributed to 54.45% of the total volatile composition. The main identified monoterpenes were citronellal (11.35%), z-Citral (11.34%), β-Myrcene (6.70%), and β-Trans-ocimene (6.03%), which was the first time β-Myrcene and β-Trans-ocimene was found in high percentage. Conclusion: C. nardus essential oil is an active antibacterial agent against several oral pathogens, and the percentages of active volatile compounds are different within different origins.


Author(s):  
Aldenora Maria Ximenes Rodrigues ◽  
Brenda Nayranne Gomes dos Santos ◽  
Ranyelison Silva Machado ◽  
Rubens Renato de Sousa Carmo ◽  
Matheus Pedrosa de Oliveira ◽  
...  

Alzheimer's disease is characterized by a progressive decline of cognitive functions. The class of drugs used for the treatment are acetylcholinesterase inhibitors. Essential oils have contributed to folk medicine and discovery of new drugs for a long time. The purpose of the study was to investigate the in vitro and in silico the anti-acetylcholinesterase activity, as well as acute toxicity of the essential oil of Lippia origanoides. EOLO was obtained by hydrostelting and analyzed by gas chromatography-mass spectrometry. The inhibition assay of acetylcholinesterase enzyme activity was evaluated in vitro, as well as in silico by docking. The effects of EOLO on hematological, biochemical and behavioral parameters were analyzed in mices. We expose that EOLO shows good anti-acetylcholinesterase activity and low toxicity, possibly resulting from the action of the majority compounds thymol, carvacrol and p-cymene. The anti-acetylcholinesterase potential in vitro demonstrating a 70% inhibition. The docking results elucidated the participation of the major phenolics in AChE inhibition by interacting with the catalytic cavity of AchE. The acute oral toxicity test classified as low toxicity. These results contribute to expand the knowledge about essential oil of Lippia origanoides. Therefore, appears to be promising for herbal medicine production with anti-acetylcholinesterase and antioxidant activity.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 815
Author(s):  
Călin Jianu ◽  
Daniela Stoin ◽  
Ileana Cocan ◽  
Ioan David ◽  
Georgeta Pop ◽  
...  

This study was conducted to identify the volatile compounds of Mentha × smithiana essential oil (MSEO) and evaluate its antioxidant and antibacterial potential. The essential oil (EO) content was assessed by gas chromatography–mass spectrometry (GC-MS). Carvone (55.71%), limonene (18.83%), trans-carveol (3.54%), cis-carveol (2.72%), beta-bourbonene (1.94%), and caryophyllene oxide (1.59%) were the main identified compounds. The MSEO displayed broad-spectrum antibacterial effects and was also found to be the most effective antifungal agent against Candida albicans and Candida parapsilosis. The antioxidant activity of MSEO was tested against cold-pressed sunflower oil by peroxide, thiobarbituric acid, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), and β-carotene/linoleic acid bleaching methods. The EO showed strong antioxidant effects as reflected by IC50 values of 0.83 ± 0.01 mg/mL and relative antioxidative activity of 87.32 ± 0.03% in DPPH and β-carotene/linoleic acid bleaching assays, respectively. Moreover, in the first 8 days of the incubation period, the inhibition of primary and secondary oxidation compounds induced by the MSEO (0.3 mg/mL) was significantly stronger (p < 0.05) than that of butylated hydroxyanisole. In silico molecular docking studies were conducted to highlight the underlying antimicrobial mechanism as well as the in vitro antioxidant potential. Recorded data showed that the antimicrobial activity of MSEO compounds could be exerted through the D-Alanine-d-alanine ligase (DDl) inhibition and may be attributed to a cumulative effect. The most active compounds are minor components of the MSEO. Docking results also revealed that several mint EO components could exert their in vitro antioxidant activity by employing xanthine oxidase inhibition. Consequently, MSEO could be a new natural source of antioxidants and antiseptics, with potential applications in the food and pharmaceutical industries as an alternative to the utilization of synthetic additives.


Nematology ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1101-1110
Author(s):  
Aline F. Barros ◽  
Vicente P. Campos ◽  
Letícia L. de Paula ◽  
Denilson F. de Oliveira ◽  
Geraldo H. Silva

Summary The nematicidal activity of the essential oil of Cymbopogon citratus and its main components were studied. During in vitro assays with Meloidogyne incognita second-stage juveniles (J2), the oil showed an LC50 of 166 μg ml−1. In vivo assays that exposed J2 to the LC50 oil concentration significantly reduced galls and eggs on tomato roots. According to gas chromatography-mass spectrometry analyses, the main components of the essential oil were geranial (42.7%) and neral (33.0%). The combination of these two isomers, known as citral, had an enhanced nematicidal activity at low concentrations as shown by in vitro tests through a synergistic interaction with undecan-2-one. In assays with tomato plants inoculated with M. incognita J2, the combination of citral (600 μg ml−1) and undecan-2-one (300 μg ml−1) showed a high reduction in the number of galls (63.4%) and eggs (56.3%) in relation to Tween 80® control. The citral/undecan-2-one combination showed a synergistic nematicidal activity against M. incognita during in vitro and in vivo assays.


2010 ◽  
Vol 5 (8) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Cybele C. García ◽  
Eliana G. Acosta ◽  
Ana C. Carro ◽  
María C. Fernández Belmonte ◽  
Renata Bomben ◽  
...  

The essential oils of seven aromatic plants from central west argentina were isolated by steam distillation and analyzed by a gas chromatography mass spectrometry technique. The oils were screened for cytotoxicity and In Vitro inhibitory activity against herpes simplex virus type 1 (HSV-1), dengue virus type 2 (DENV-2) and Junin virus (JUNV). The oils showed a variable virucidal action according to the virus. JUNV was the least susceptible virus in comparison with HSV-1 and DENV-2. The better relationship between cytotoxicity and inhibitory activity was observed for the essential oil of Lantana grisebachiii (Seckt.) var. grisebachii against DENV-2 and HSV-1 with IC50 (inhibitory concentration 50%) values of 21.1 and 26.1 ppm, respectively. This effect was specific since the selectivity indices (ratio cytotoxicity/virucidal activity) were > 23.7 and > 19.1 for DENV-2 and HSV-1, respectively. Furthermore, the oil from L. grisebachii was also an effective inhibitor of HSV-2 and acyclovir resistant variants of herpes virus. This study demonstrates the effective and selective inhibitory activity of the essential oil from Lantana grisebachii against HSV and DENV by direct virus inactivation.


Sign in / Sign up

Export Citation Format

Share Document