scholarly journals Synthesis and characterization of the ionic liquid 1-methyl-3-(2,6-(S)-dimethyloct-2-ene)-imidazol tetrafluoroborate

2021 ◽  
Vol 10 (10) ◽  
pp. e393101018988
Author(s):  
Ângelo Anderson Silva de Oliveira ◽  
Dulce Maria de Araújo Melo ◽  
Heloísa Pimenta de Macedo ◽  
Rodolfo Luis Bezerra de Araújo Medeiros ◽  
Ranayanne Suylane Pereira Campos ◽  
...  

Ionic liquids (ILs) are good electrical conductors and organic liquid compounds at room temperature, with potential applicability in water electrolysis for H2 generation. The objective of this work is to describe the synthesis, characterization and study of the feasibility of ionic liquid 1-methyl-3-(2,6-(S)-dimethyloct-2-ene)-imidazolium tetrafluoroborate (MDI-BF4) as electrolyte to produce hydrogen through electrolysis of water. The synthesized MDI-BF4 was characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), mid-infrared spectroscopy with Fourier Transform by method of attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy of hydrogen (NMR 1H) and cyclic voltammetry (CV). The yield of the synthesis were calculate by the TGA and DSC. From the results: The infrared spectroscopy identified the functional groups of the compound and the B-F bond at 1053 cm-1. The NMR 1H analyzed and compared with literature data confirms the structure of MDI-BF4. The yield of the synthesis of MDI-BF4 which was 88.84%. The current density achieved by MDI-BF4 in the voltammogram shows that the IL can conduct electrical current regardless the concentration of water, indicating that the MDI-BF4 is a potential electrolyte for hydrogen production from water electrolysis.

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 205
Author(s):  
Linh Dinh ◽  
Soohun Lee ◽  
Sharif Md Abuzar ◽  
Heejun Park ◽  
Sung-Joo Hwang

Donepezil (DPZ) is generally administered orally to treat Alzheimer’s disease (AD). However, oral administration can cause gastrointestinal side effects. Therefore, to enhance compliance, a new way to deliver DPZ from transdermal patch was developed. Ionic bonds were created by dissolving dicarboxylic acid and DPZ in ethanol, resulting in a stable ionic liquid (IL) state. The synthesized ILs were characterized by differential scanning calorimetry, optical microscope, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The DPZ ILs were then transformed to a suitable drug-in-adhesive patch for transdermal delivery of DPZ. The novel DPZ ILs patch inhibits crystallization of the IL, indicating coherent design. Moreover, DPZ ILs and DPZ IL patch formulations performed excellent skin permeability compared to that of the DPZ free-base patch in both in vitro and ex vivo skin permeability studies.


Molbank ◽  
10.3390/m1089 ◽  
2019 ◽  
Vol 2019 (4) ◽  
pp. M1089
Author(s):  
Andrea Mezzetta ◽  
Christian S. Pomelli ◽  
Felicia D’Andrea ◽  
Lorenzo Guazzelli

The title compound 1-octyl-3-(3-(1-methylpyrrolidiniumyl)propyl)imidazolium bis(trifluoromethane)sulfonimide was prepared in three steps. This asymmetrical dicationic ionic liquid (ADIL) is composed of two different positively charged head groups (1-octylimidazolium and methylpyrrolidinium cations), which are linked through a propyl alkyl chain and by two bis(trifluoromethane)sulfonimide anions. The final ADIL was obtained by a simple metathesis reaction of the corresponding dibromide ionic liquid, in turn prepared by alkylation of 3-(3-bromopropyl)-1-propylimidazolium bromide. The ADIL structure and those of its precursors were confirmed through NMR and infrared spectroscopy, and the thermal properties of all compounds were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Density, solubility, and viscosity were measured for the prepared compounds.


e-Polymers ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Liying Guo ◽  
Xiuyun Ma ◽  
Bin Zhang ◽  
Zhiming Wang ◽  
Pengcheng Huang

AbstractPolyether imidazole ionic liquid (PIIL) was synthesized from N-ethyl iminazole and hydroxyl-terminated polyepichlorhydrin, produced through cationic ring-opening polymerization of epichlorohydrin using Et2O·BF3 as catalyst, and utilized for the modification of polypropylene (PP) by the method of melt blending. The prepared PIIL was characterized by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy. The resulting composite of PP and PIIL was characterized by differential scanning calorimetry and X-ray diffraction analyses. With PIIL acting as a nucleating agent, the crystal structure of PP transformed from α to β crystalline form after modification, while crystallization peak temperature was kept unchanged. Comparison test of the mechanical properties of pure PP and PP/PIIL proved that the long flexible chain of PIIL achieved good compatibility with PP and had reinforcing and toughening effects on PP. With the increase of ionic liquid in PP, both the impact strength and the breaking elongation of the PP/PIIL composite were significantly improved.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ae Ran Lim ◽  
Sun Ha Kim ◽  
Yong Lak Joo

AbstractThe physical properties of the organic–inorganic hybrid crystals having the formula [NH3(CH2)3NH3]ZnX4 (X = Cl, Br) were investigated. The phase transition temperatures (TC; 268K for Cl and 272K for Br) of the two crystals bearing different halogen atoms in their skeletons were determined through differential scanning calorimetry. The thermodynamic properties of the two crystals were investigated through thermogravimetric analysis. The structural dynamics, particularly the role of the [NH3(CH2)3NH3] cation, were probed through 1H and 13C magic-angle spinning nuclear magnetic resonance spectroscopy as a function of temperature. The 1H and 13C NMR chemical shifts did not show any changes near TC. In addition, the 1H spin–lattice relaxation time (T1ρ) varied with temperature, whereas the 13C T1ρ values remained nearly constant at different temperatures. The T1ρ values of the atoms in [NH3(CH2)3NH3]ZnCl4 were higher than those in [NH3(CH2)3NH3]ZnBr4. The observed differences in the structural dynamics obtained from the chemical shifts and T1ρ values of the two compounds can be attributed to the differences in the bond lengths and halogen atoms. These findings can provide important insights or potential applications of these crystals.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3950
Author(s):  
Abeer Alassod ◽  
Syed Rashedul Islam ◽  
Mina Shahriari Khalaji ◽  
Rogers Tusiime ◽  
Wanzhen Huang ◽  
...  

Compositing is an interesting strategy that has always been employed to introduce or enhance desired functionalities in material systems. In this paper, sponges containing polypropylene, lignin, and octavinyl-polyhedral oligomeric silsesquioxane (OV-POSS) were successfully prepared via an easy and elegant strategy called thermally induced phase separation (TIPS). To fully explore the behaviour of different components of prepared sponges, properties were characterized by a thermogravimetric analyser (TGA), differential scanning calorimetry (DSC), Fourier transform infrared measurement (FTIR), and scanning electron microscopy (SEM). Furthermore, wettability properties toward an organic liquid and oil were investigated. The FTIR analysis confirmed the chemical modification of the components. TGA and DSC measurements revealed thermal stability was much better with an increase in OV-POSS content. OV-POSS modified sponges exhibited ultra-hydrophobicity and high oleophilicity with water contact angles of more than 125°. The SEM revealed that POSS molecules acted as a support for reduced surface roughness. Moreover, OV-POSS-based blend sponges showed higher sorption capacities compared with other blend sponges without OV-POSS. The new blend sponges demonstrated a potential for use as sorbent engineering materials in water remediation.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 773
Author(s):  
Jyun-Yan Ye ◽  
Kuo-Fu Peng ◽  
Yu-Ning Zhang ◽  
Szu-Yuan Huang ◽  
Mong Liang

A series of N-substituted polyether-block-amide (PEBA-X%) copolymers were prepared by melt polycondensation of nylon-6 prepolymer and polytetramethylene ether glycol at an elevated temperature using titanium isopropoxide as a catalyst. The structure, thermal properties, and crystallinity of PEBA-X% were investigated using nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, wide angle X-ray diffraction, and thermogravimetric analysis. In general, the crystallinity, melting point, and thermal degradation temperature of PEBA-X% decreased as the incorporation of N-methyl functionalized groups increased, owing to the disruption caused to the structural regularity of the copolymer. However, in N-acetyl functionalized analogues, the crystallinity first dropped and then increased because of a new γ form arrangement that developed in the microstructure. After the cross-linking reaction of the N-methyl-substituted derivative, which has electron-donating characteristics, with poly(4,4′-methylenebis(phenyl isocyanate), the decomposition temperature of the resulting polymer significantly increased, whereas no such improvements could be observed in the case of the electro-withdrawing N-acetyl-substituted derivative, because of the incompleteness of its cross-linking reaction.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1915 ◽  
Author(s):  
Eyob Wondu ◽  
Hyun Woo Oh ◽  
Jooheon Kim

In this study water-soluble polyurethane (WSPU) was synthesized from isophorone diisocyanate (IPDI), and polyethylene glycol (PEG), 2-bis(hydroxymethyl) propionic acid or dimethylolpropionic acid (DMPA), butane-1,4-diol (BD), and triethylamine (TEA) using an acetone process. The water solubility was investigated by solubilizing the polymer in water and measuring the contact angle and the results indicated that water solubility and contact angle tendency were increased as the molecular weight of the soft segment decreased, the amount of emulsifier was increased, and soft segment to hard segment ratio was lower. The contact angle of samples without emulsifier was greater than 87°, while that of with emulsifier was less than 67°, indicating a shift from highly hydrophobic to hydrophilic. The WSPU was also analyzed using Fourier transform infrared spectroscopy (FT-IR) to identify the absorption of functional groups and further checked by X-ray photoelectron spectroscopy (XPS). The molecular weight of WSPU was measured using size-exclusion chromatography (SEC). The structure of the WSPU was confirmed by nuclear magnetic resonance spectroscopy (NMR). The thermal properties of WSPU were analyzed using thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC).


2014 ◽  
Vol 915-916 ◽  
pp. 713-716
Author(s):  
Qing Zhang ◽  
Jing Tian ◽  
Zhi Qi Cao ◽  
Ru Xia Xu ◽  
Zhen Zhen Sun ◽  
...  

In this investigation, Schiff bases aluminum complex was synthesized and used as the initiator in the polymerization of D,L-lactide. The aluminum complex was characterized by infrared spectroscopy (IR), and nuclear magnetic resonance spectroscopy (NMR). The influences of different factors, including reaction time, reaction temperature, and the ratio of D, L-lactide/Al3+ on the synthesis of polylactide were described. The results showed that Schiff bases aluminum complex could be successfully applied in the ring opening polymerization. The optimum condition of the ring opening polymerization of D,L-lactide, which included D,L-lactide/Al3+ (mol/mol) ratio of 250, reaction temperature of 120 °C, and reaction time of 16 hours.


RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 92065-92072 ◽  
Author(s):  
Sónia Silva ◽  
Flávia Tobaldini-Valerio ◽  
Sofia Costa-de-Oliveira ◽  
Mariana Henriques ◽  
Joana Azeredo ◽  
...  

Accurate Candida species identification remains a challenge due to their phenotypic and genotypic similarity.


Sign in / Sign up

Export Citation Format

Share Document