scholarly journals Impacts of Betaine Addition in Sow and Piglet's Diets on Growth Performance, Plasma Hormone, and Lipid Metabolism of Bama Mini-Pigs

2021 ◽  
Vol 8 ◽  
Author(s):  
Yating Cheng ◽  
Mingtong Song ◽  
Qian Zhu ◽  
Md. Abul Kalam Azad ◽  
Qiankun Gao ◽  
...  

The present study evaluated the effects of betaine addition in sow and piglet's diets on growth performance, plasma hormone, and lipid metabolism of Bama mini-pigs. A total of 26 pregnant Bama mini-pigs and 104 weaned piglets were selected and divided into different dietary treatment groups (details in “Materials and Methods”). Blood and muscle samples were collected at 65-, 95-, and 125-day-old, respectively. The results showed that betaine addition in sow-offspring diets increased (P < 0.05) the body weight at 125-day-old, average daily gain from 35- to 65-day-old, and average daily feed intake at 35–65 and 35–95 days old of pigs compared with the control group. Betaine addition in sow-offspring diets increased (P < 0.05) the plasma gastrin level at 95-day-old, while betaine addition in sow diets decreased (P < 0.05) the plasma peptide YY and leptin levels at 65-day-old pigs. In the longissimus dorsi muscle of pigs, betaine addition in sow and sow-offspring diets increased (P < 0.05) the C12:0 content at 65-day-old while decreased at 95-day-old. Moreover, betaine addition in sow-offspring diets increased the C24:0 content and decreased the C18:1n9t content at 125-day-old (P < 0.05). In the biceps femoris muscle, the contents of C12:0 at 65-day-old and C20:4n6 at 125-day-old were decreased (P < 0.05) after the betaine addition in both sow and piglet's diets. In addition, betaine addition in sow diets decreased (P < 0.05) the C20:0 content at 125-day-old, while betaine addition in sow-offspring diets increased the C18:3n6 and decreased C24:0 contents at 65-day-old pigs (P < 0.05). In the psoas major muscle, betaine addition in sow and sow-offspring diets decreased (P < 0.05) the contents of C18:1n9t at 65-day-old and C20:1 at 95-day-old, while betaine addition in sow diets decreased (P < 0.05) the intramuscular fat content at 125-day-old. Moreover, betaine addition in sow-offspring diets was also associated with muscle lipid deposition and metabolisms by regulating the gene expressions related to fatty acid metabolism. These findings suggested that betaine addition in sow-offspring diets could improve the growth performance, whereas betaine addition in both sow and sow-offspring diets could enhance lipid quality by altering plasma hormone level and fatty acid composition and regulating the gene expressions related to fatty acid metabolism.

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Meng Zhang ◽  
Fang Li ◽  
Xiang-fei Ma ◽  
Wen-ting Li ◽  
Rui-rui Jiang ◽  
...  

Abstract Background The distribution and deposition of fat tissue in different parts of the body are the key factors affecting the carcass quality and meat flavour of chickens. Intramuscular fat (IMF) content is an important factor associated with meat quality, while abdominal fat (AbF) is regarded as one of the main factors affecting poultry slaughter efficiency. To investigate the differentially expressed genes (DEGs) and molecular regulatory mechanisms related to adipogenic differentiation between IMF- and AbF-derived preadipocytes, we analysed the mRNA expression profiles in preadipocytes (0d, Pre-) and adipocytes (10d, Ad-) from IMF and AbF of Gushi chickens. Results AbF-derived preadipocytes exhibited a higher adipogenic differentiation ability (96.4% + 0.6) than IMF-derived preadipocytes (86.0% + 0.4) (p < 0.01). By Ribo-Zero RNA sequencing, we obtained 4403 (2055 upregulated and 2348 downregulated) and 4693 (2797 upregulated and 1896 downregulated) DEGs between preadipocytes and adipocytes in the IMF and Ad groups, respectively. For IMF-derived preadipocyte differentiation, pathways related to the PPAR signalling pathway, ECM-receptor interaction and focal adhesion pathway were significantly enriched. For AbF-derived preadipocyte differentiation, the steroid biosynthesis pathways, calcium signaling pathway and ECM-receptor interaction pathway were significantly enriched. A large number of DEGs related to lipid metabolism, fatty acid metabolism and preadipocyte differentiation, such as PPARG, ACSBG2, FABP4, FASN, APOA1 and INSIG1, were identified in our study. Conclusion This study revealed large transcriptomic differences between IMF- and AbF-derived preadipocyte differentiation. A large number of DEGs and transcription factors that were closely related to fatty acid metabolism, lipid metabolism and preadipocyte differentiation were identified in the present study. Additionally, the microenvironment of IMF- and AbF-derived preadipocyte may play a significant role in adipogenic differentiation. This study provides valuable evidence to understand the molecular mechanisms underlying adipogenesis and fat deposition in chickens.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Zengpeng Lv ◽  
Hao Fan ◽  
Bochen Song ◽  
Guang Li ◽  
Dan Liu ◽  
...  

The experiment was designed to clarify the effect and molecular mechanism of maternal genistein (GEN) on the lipid metabolism and developmental growth of offspring chicks. Laying broiler breeder (LBB) hens were supplemented with 40 mg/kg genistein (GEN), while the control group was fed with the low-soybean meal diet. The offspring chicks were grouped according to the mother generation with 8 replicates each. Hepatic transcriptome data revealed 3915 differentially expressed genes (DEGs, P adjusted < 0.05, fold change>1.5 or fold change<0.67) between chicks in the two groups. Maternal GEN activated the GH-IGF1-PI3K/Akt signaling pathway, which promoted the developmental processes and cellular amino acid metabolic processes, as well as inhibited the apoptotic process. GEN treatment significantly increased the weight gain, breast muscle percentage, and liver index in chicks. PANTHER clustering analysis suggested that maternal GEN enhanced the antioxidant activity of chicks by the upregulation of gene (SOD3, MT1, and MT4) expression. Accordingly, the activities of T-AOC and T-SOD in the liver were increased after GEN treatment. The overrepresentation tests revealed that maternal GEN influenced the glycolysis, unsaturated fatty acid biosynthesis, acyl-coenzyme A metabolism, lipid transport, and cholesterol metabolism in the chick livers. Hepatic cholesterol and long-chain fatty acid were significantly decreased after GEN treatment. However, the level of arachidonic acid was higher in the livers of the GEN-treated group compared with the CON group. Moreover, GEN treatment enhanced fatty acid β-oxidation and upregulated PPARδ expression in the chick liver. ChIP-qPCR analysis indicated that maternal GEN might induce histone H3-K36 trimethylation in the promoter region of PPARδ gene (PPARD) through Iws1, methyltransferases. It also induced histone H4-K12 acetylation at the PPARD promoter through MYST2, which activated the PPAR signaling pathways in the chick livers. In summary, supplementing LBB hens with GEN can alter lipid metabolism in the offspring chicks through epigenetic modification and improve the antioxidative capability as well as growth performance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weilin Chen ◽  
Qi Wang ◽  
Bin Zhou ◽  
Lihua Zhang ◽  
Honglin Zhu

Rheumatic diseases are a group of chronic autoimmune disorders that involve multiple organs or systems and have high mortality. The mechanisms of these diseases are still ill-defined, and targeted therapeutic strategies are still challenging for physicians. Recent research indicates that cell metabolism plays important roles in the pathogenesis of rheumatic diseases. In this review, we mainly focus on lipid metabolism profiles (dyslipidaemia, fatty acid metabolism) and mechanisms in rheumatic diseases and discuss potential clinical applications based on lipid metabolism profiles.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jinghui Lu ◽  
Yankun Zhang ◽  
Min Sun ◽  
Changyuan Ding ◽  
Lei Zhang ◽  
...  

ObjectivePapillary thyroid carcinoma (PTC) accounts for the majority of thyroid cancer and affects a large number of individuals. The pathogenesis of PTC has not been completely elucidated thus far. Metabolic reprogramming is a common feature in tumours. Our previous research revealed the reprogramming of lipid metabolism in PTC. Further studies on lipid metabolism reprogramming may help elucidate the pathogenesis of PTC.MethodsClinical samples of PTC and para-tumour tissue were analysed using lipidomic, proteomic, and metabolomic approaches. A multi-omics integrative strategy was adopted to identify the important pathways in PTC. The findings were further confirmed using western blotting, tissue microarray, bioinformatics, and cell migration assays.ResultsMulti-omics data and the results of integrated analysis revealed that the three steps of fatty acid metabolism (hydrolysis, transportation, and oxidation) were significantly enhanced in PTC. Especially, the expression levels of LPL, FATP2, and CPT1A, three key enzymes in the respective steps, were elevated in PTC. Moreover, LPL, FATP2 and CPT1A expression was associated with the TNM stage, lymph node metastasis of PTC. Moreover, high levels of FATP2 and CPT1A contributed to poor prognosis of PTC. In addition, ectopic overexpression of LPL, FATP2 and CPT1A can each promote the migration of thyroid cancer cells.ConclusionsOur data suggested that enhanced fatty acid metabolism supplied additional energy and substrates for PTC progression. This may help elucidating the underlying mechanism of PTC pathogenesis and identifying the potential therapeutic targets for PTC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Li-Yan Li ◽  
Qian Yang ◽  
Yan-Yi Jiang ◽  
Wei Yang ◽  
Yuan Jiang ◽  
...  

AbstractSquamous cell carcinomas (SCCs) comprise one of the most common histologic types of human cancer. Transcriptional dysregulation of SCC cells is orchestrated by tumor protein p63 (TP63), a master transcription factor (TF) and a well-researched SCC-specific oncogene. In the present study, both Gene Set Enrichment Analysis (GSEA) of SCC patient samples and in vitro loss-of-function assays establish fatty-acid metabolism as a key pathway downstream of TP63. Further studies identify sterol regulatory element binding transcription factor 1 (SREBF1) as a central mediator linking TP63 with fatty-acid metabolism, which regulates the biosynthesis of fatty-acids, sphingolipids (SL), and glycerophospholipids (GPL), as revealed by liquid chromatography tandem mass spectrometry (LC-MS/MS)-based lipidomics. Moreover, a feedback co-regulatory loop consisting of SREBF1/TP63/Kruppel like factor 5 (KLF5) is identified, which promotes overexpression of all three TFs in SCCs. Downstream of SREBF1, a non-canonical, SCC-specific function is elucidated: SREBF1 cooperates with TP63/KLF5 to regulate hundreds of cis-regulatory elements across the SCC epigenome, which converge on activating cancer-promoting pathways. Indeed, SREBF1 is essential for SCC viability and migration, and its overexpression is associated with poor survival in SCC patients. Taken together, these data shed light on mechanisms of transcriptional dysregulation in cancer, identify specific epigenetic regulators of lipid metabolism, and uncover SREBF1 as a potential therapeutic target and prognostic marker in SCC.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 812 ◽  
Author(s):  
Yannick Poitelon ◽  
Ashley M. Kopec ◽  
Sophie Belin

Myelin is critical for the proper function of the nervous system and one of the most complex cell–cell interactions of the body. Myelination allows for the rapid conduction of action potentials along axonal fibers and provides physical and trophic support to neurons. Myelin contains a high content of lipids, and the formation of the myelin sheath requires high levels of fatty acid and lipid synthesis, together with uptake of extracellular fatty acids. Recent studies have further advanced our understanding of the metabolism and functions of myelin fatty acids and lipids. In this review, we present an overview of the basic biology of myelin lipids and recent insights on the regulation of fatty acid metabolism and functions in myelinating cells. In addition, this review may serve to provide a foundation for future research characterizing the role of fatty acids and lipids in myelin biology and metabolic disorders affecting the central and peripheral nervous system.


2017 ◽  
Vol 8 (3) ◽  
pp. 439-449 ◽  
Author(s):  
J. Yan ◽  
C. Guo ◽  
M.A.O. Dawood ◽  
J. Gao

This study was performed to evaluate the effects of dietary chitosan supplementation on growth performance, lipid metabolism, gut microbial, antioxidant status and immune responses of juvenile loach (Misgurnus anguillicaudatus). Five experimental diets were formulated to contain graded levels of chitosan (0 (control), 0.5, 1, 2 and 5% CHI) for 50 days. Results of the present study showed that body weight gain was significantly higher in fish fed chitosan supplemented diets in dose dependent manner than control group. Increasing dietary chitosan levels reduced gut lipid content. Meanwhile the mRNA expression levels of intestine lipoprotein lipase and fatty acid binding protein 2 were significantly reduced with incremental dietary chitosan level. The percentages of total monounsaturated fatty acid decreased, while polyunsaturated fatty acid increased with dietary chitosan. The fish fed 0.5% CHI had higher mucus lysozyme activity (LZM) than those fed 0% CHI, but the LZM activity was significantly decreased with advancing chitosan supplement. The expression levels of superoxide dismutase, catalase and glutathione peroxidase revealed a similar trend, where the highest expressions were found in fish fed 5% CHI diet. In the term of intestine microbiota between 0 and 1% CHI groups, the proportion of bacteria in the phylum Bacteroidetes increased, whereas the proportion of bacteria in the phylum Firmicutes decreased as the fish supplemented chitosan. In conclusion, supplementation of chitosan improved growth performance, antioxidant status and immunological responses in loach.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2022
Author(s):  
Jhih-Han Yeh ◽  
Yu-Tang Tung ◽  
Yu-Sheng Yeh ◽  
Yi-Wen Chien

Background: Obesity is a state of excess energy storage resulting in body fat accumulation, and postmenopausal obesity is a rising issue. In this study using ovariectomized (OVX) rats, we mimicked low estrogen levels in a postmenopausal state in order to investigate the effects of different amounts and types of dietary fatty acids on body fat accumulation and body lipid metabolism. Methods: At 9 weeks of age, rats (n = 40) were given an ovariectomy, eight of which were sham-operated to serve as a control group (S). We then divided OVX rats into four different intervention groups: diet with 5% soybean oil (C), and diet with 5% (L), 15% (M), and 20% (H) (w/w) experimental oil, containing 60% monounsaturated fatty acids (MUFAs) and with a polyunsaturated/saturated fatty acid (P/S) ratio of 5. Results: After OVX, compared to the S group, the C group showed significantly higher body weight, and insulin and leptin levels. Compared to the C group, the H group had lower hepatic triglyceride level and FAS enzyme activity, and higher hepatic ACO and CPT-1 gene expressions and enzyme activities. Conclusions: An OVX leads to severe weight gain and lipid metabolism abnormalities, while according to previous studies, high fat diet may worsen the situation. However, during our experiment, we discovered that the experimental oil mixture with 60% MUFAs and P/S = 5 may ameliorate these imbalances.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 388-388
Author(s):  
Qian Zhu ◽  
Jingjing Wu ◽  
Daxue He ◽  
Xuemei Lian

Abstract Objectives To investigate the effects of plant sterols intake on systematic and tissue specific lipid metabolism in C57BL/6J mice. Methods Male C57BL/6J mice were randomly divided into control diet group (CS) and plant sterol group (PS, 2% plant sterols). After 28 weeks of continuous feeding, the serum of the mice were collected for biochemical and mass spectrometry tests. Serum levels of total cholesterol (TC), triglyceride (TG) and free sterols were determined. The livers and lungs were collected for free sterol quantification and RNA-seq analysis. Results Compared with the CS group, 2% plant sterols intake significantly reduced the levels of TC in the serum of mice (P &lt; 0.05), with the TG level unchanged. The quantitative results of free sterols showed that the concentration of campesterol were increased, and the cholestanol levels were decreased significantly in the serum and liver of the PS group mice. The results of RNA-seq analysis were used to further evaluate its impact on the lipid metabolism related gene expression profile in the livers and lungs. The results showed that HMGCR, SQLE, HMGCS1, SREBF1, and other genes related to cholesterol synthesis in the PS group were significantly up-regulated in the liver, but not in the lung; Among the first 20 targeting pathways related to the action of plant sterols, the liver differentially expressed genes were enriched in lipid metabolism (steroid biosynthesis, terpenoid skeleton biosynthesis, peroxisome, bile acid secretion, PPAR, MAPK, fatty acid metabolism.), inflammation related (Cell adhesion molecules, leukocyte trans-endothelial migration) and amino acid metabolism (glutathione, valine, leucine and isoleucine metabolism). The differential genes in lung tissue are enriched in lipid metabolism (acetone metabolism, fatty acid metabolism, insulin resistance, terpenoid skeleton biosynthesis, iron death, PPAR), cell function (internal Swallowing, aging) and vascular smooth muscle contraction etc. Conclusions Differentially expressed gene networks reflect the multi-dimensional regulation of plant sterols on tissue specific lipid metabolism, which lays a good foundation for further revealing its mechanism. Funding Sources Yihaikerry Nutrition and Food Safety Foundation, Chinese Nutrition Society; Project of Technology Innovation and Application, Chongqing, China


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Guoxun Chen

The increase in the number of people with obesity- and noninsulin-dependent diabetes mellitus has become a major public health concern. Insulin resistance is a common feature closely associated with human obesity and diabetes. Insulin regulates metabolism, at least in part, via the control of the expression of the hepatic genes involved in glucose and fatty acid metabolism. Insulin resistance is always associated with profound changes of the expression of hepatic genes for glucose and lipid metabolism. As an essential micronutrient, vitamin A (VA) is needed in a variety of physiological functions. The active metablite of VA, retinoic acid (RA), regulates the expression of genes through the activation of transcription factors bound to the RA-responsive elements in the promoters of RA-targeted genes. Recently, retinoids have been proposed to play roles in glucose and lipid metabolism and energy homeostasis. This paper summarizes the recent progresses in our understanding of VA metabolism in the liver and of the potential transcription factors mediating RA responses. These transcription factors are the retinoic acid receptor, the retinoid X receptor, the hepatocyte nuclear factor 4α, the chicken ovalbumin upstream promoter-transcription factor II, and the peroxisome proliferator-activated receptor β/δ. This paper also summarizes the effects of VA status and RA treatments on the glucose and lipid metabolism in vivo and the effects of retinoid treatments on the expression of insulin-regulated genes involved in the glucose and fatty acid metabolism in the primary hepatocytes. I discuss the roles of RA production in the development of insulin resistance in hepatocytes and proposes a mechanism by which RA production may contribute to hepatic insulin resistance. Given the large amount of information and progresses regarding the physiological functions of VA, this paper mainly focuses on the findings in the liver and hepatocytes and only mentions the relative findings in other tissues and cells.


Sign in / Sign up

Export Citation Format

Share Document