scholarly journals The Biomarker Potential of Caveolin-1 in Penile Cancer

2021 ◽  
Vol 11 ◽  
Author(s):  
Andrej Panic ◽  
Henning Reis ◽  
Alina Wittka ◽  
Christopher Darr ◽  
Boris Hadaschik ◽  
...  

Various types of human cancers were characterized by an altered expression of epithelial or stromal caveolin-1 (CAV1). However, the clinical significance of CAV1 expression in penile cancer remains largely unknown. Here the expression patterns of CAV1 were analyzed in a retrospective cohort (n=43) of penile squamous cell carcinomas (SCC). Upon penile cancer progression, significantly increased CAV1-levels were determined within the malignant epithelium, whereas within the tumor stroma, namely the fibroblastic tumor compartment harboring activated and/or cancer associated fibroblasts, CAV1 levels significantly decline. Concerning the clinicopathological significance of CAV1 expression in penile cancer as well as respective epithelial-stromal CAV1 distributions, high expression within the tumor cells as well as low expression of CAV1 within the stromal compartment were correlated with decreased overall survival of penile cancer patients. Herein, CAV1 expressions and distributions at advanced penile cancer stages were independent of the immunohistochemically proven tumor protein p53 status. In contrast, less differentiated p16-positive tumor epithelia (indicative for human papilloma virus infection) were characterized by significantly decreased CAV1 levels. Conclusively, we provide further and new evidence that the characteristic shift in stromal‐epithelial CAV1 being functionally relevant to tumor progression even occurs in penile SCC.

2013 ◽  
Vol 59 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Nor Eddine Sounni ◽  
Agnès Noel

BACKGROUND With the emergence of the tumor microenvironment as an essential ingredient of cancer malignancy, therapies targeting the host compartment of tumors have begun to be designed and applied in the clinic. CONTENT The malignant features of cancer cells cannot be manifested without an important interplay between cancer cells and their local environment. The tumor infiltrate composed of immune cells, angiogenic vascular cells, lymphatic endothelial cells, and cancer-associated fibroblastic cells contributes actively to cancer progression. The ability to change these surroundings is an important property by which tumor cells are able to acquire some of the hallmark functions necessary for tumor growth and metastatic dissemination. Thus in the clinical setting the targeting of the tumor microenvironment to encapsulate or destroy cancer cells in their local environment has become mandatory. The variety of stromal cells, the complexity of the molecular components of the tumor stroma, and the similarity with normal tissue present huge challenges for therapies targeting the tumor microenvironment. These issues and their interplay are addressed in this review. After a decade of intensive clinical trials targeting cellular components of the tumor microenvironment, more recent investigations have shed light on the important role in cancer progression played by the noncellular stromal compartment composed of the extracellular matrix. SUMMARY A better understanding of how the tumor environment affects cancer progression should provide new targets for the isolation and destruction of cancer cells via interference with the complex crosstalk established between cancer cells, host cells, and their surrounding extracellular matrix.


Author(s):  
Eleana Parajón ◽  
Alexandra Surcel ◽  
Douglas N. Robinson

Cancer progression is dependent on heightened mechanical adaptation, both for the cells' ability to change shape and to interact with varying mechanical environments. This type of adaptation is dependent on mechanoresponsive proteins that sense and respond to mechanical stress, as well as their regulators. Mechanoresponsive proteins are part of the mechanobiome, which is the larger network that constitutes the cell's mechanical systems that are also highly integrated with many other cellular systems, such as gene expression, metabolism, and signaling. Despite the altered expression patterns of key mechanobiome proteins across many different cancer types, pharmaceutical targeting of these proteins has been overlooked. Here we review the biochemistry of key mechanoresponsive proteins, specifically nonmuscle myosin II, α-actinins, and filamins, as well as the partnering proteins 14-3-3 and CLP36. We also examined a wide range of data sets to assess how gene and protein expression levels of these proteins are altered across many different cancer types. Finally, we determined the potential of targeting these proteins to mitigate invasion or metastasis and suggest that the mechanobiome is a goldmine of opportunity for anti-cancer drug discovery and development.


Author(s):  
Alessandra Toti ◽  
Alice Santi ◽  
Elisa Pardella ◽  
Ilaria Nesi ◽  
Richard Tomasini ◽  
...  

AbstractCancer-associated fibroblasts (CAFs) are one of the main components of the stromal compartment in the tumor microenvironment (TME) and the crosstalk between CAFs and cancer cells is essential for tumor progression and aggressiveness. Cancer cells mediate an activation process, converting normal fibroblasts into CAFs, that are characterized by modified expression of many proteins and increased production and release of microvesicles (MVs), extracellular vesicles generated by outwards budding from the cell membrane. Recent evidence underlined that the uptake of CAF-derived MVs changes the overall protein content of tumor cells. In this paper, we demonstrate that tumor activated fibroblasts overexpress Galectin-1 (Gal-1) and consequently release MVs containing increased levels of this protein. The uptake of Gal-1 enriched MVs by tumor cells leads to the upregulation of its intracellular concentration, that strongly affects cancer cell migration, while neither proliferation nor adhesion are altered. Accordingly, tumor cells co-cultured with fibroblasts silenced for Gal-1 have a reduced migratory ability. The present work reveals the key role of an exogenous protein, Gal-1, derived from activated fibroblasts, in cancer progression, and contributes to clarify the importance of MVs-mediated protein trafficking in regulating tumor-stroma crosstalk.


2022 ◽  
Author(s):  
Dipak K. Sahoo ◽  
Dana C. Borcherding ◽  
Lawrance Chandra ◽  
Albert E. Jergens ◽  
Todd Atherly ◽  
...  

Abstract Lipopolysaccharide (LPS) is associated with chronic intestinal inflammation and promotes intestinal cancer progression in the gut. While the interplay between LPS and intestinal immune cells has been well characterized, little is known about LPS and intestinal epithelium interactions. In this study, we explored the differential effect of LPS on proliferation and the transcriptome in 3D enteroids/colonoids obtained from dogs with naturally occurring gastrointestinal (GI) diseases, such as Inflammatory Bowel Disease (IBD) and GI mast cell tumor. The study objective was to analyze LPS-induced modulation of signaling pathways involving the intestinal epithelia and critical to colorectal cancer development in the context of IBD or a tumor microenvironment. While LPS incubation resulted in a pro-cancer gene expression pattern and stimulated proliferation of IBD enteroids and colonoids, down-regulation of several cancer-associated genes like CRYZL1, Gpatch4, SLC7A1, ATP13A2, and ZNF358 was also observed in tumor enteroids. Genes participating in porphyrin metabolism (CP), thiamine and purine metabolism (TAP2, EEF1A1), arachidonic acid, and glutathione metabolism (GPX1) exhibited a similar pattern of altered expression between IBD enteroids and IBD colonoids following LPS stimulation. In contrast, genes involved in anion transport, transcription and translation, apoptotic processes, and regulation of adaptive immune responses showed opposite expression patterns between IBD enteroids and colonoids following LPS treatment. In brief, the cross-talk between LPS/TLR4 signal transduction pathway and several metabolic pathways, such as fatty acid degradation and biosynthesis, and purine, thiamine, arachidonic acid, and glutathione metabolism, may be important in driving chronic intestinal inflammation and intestinal carcinogenesis.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Francesca Cammarota ◽  
Mikko O. Laukkanen

The study of cancer biology has mainly focused on malignant epithelial cancer cells, although tumors also contain a stromal compartment, which is composed of stem cells, tumor-associated fibroblasts (TAFs), endothelial cells, immune cells, adipocytes, cytokines, and various types of macromolecules comprising the extracellular matrix (ECM). The tumor stroma develops gradually in response to the needs of epithelial cancer cells during malignant progression initiating from increased local vascular permeability and ending to remodeling of desmoplastic loosely vascularized stromal ECM. The constant bidirectional interaction of epithelial cancer cells with the surrounding microenvironment allows damaged stromal cell usage as a source of nutrients for cancer cells, maintains the stroma renewal thus resembling a wound that does not heal, and affects the characteristics of tumor mesenchymal stem/stromal cells (MSCs). Although MSCs have been shown to coordinate tumor cell growth, dormancy, migration, invasion, metastasis, and drug resistance, recently they have been successfully used in treatment of hematopoietic malignancies to enhance the effect of total body irradiation-hematopoietic stem cell transplantation therapy. Hence, targeting the stromal elements in combination with conventional chemotherapeutics and usage of MSCs to attenuate graft-versus-host disease may offer new strategies to overcome cancer treatment failure and relapse of the disease.


2021 ◽  
Vol 22 (15) ◽  
pp. 8219
Author(s):  
Yosef Avchalumov ◽  
Alison D. Kreisler ◽  
Wulfran Trenet ◽  
Mahasweta Nayak ◽  
Brian P. Head ◽  
...  

Dopamine D1 receptor (D1R) function is regulated by membrane/lipid raft-resident protein caveolin-1 (Cav1). We examined whether altered expression of Cav1 in the dorsal striatum would affect self-administration of methamphetamine, an indirect agonist at the D1Rs. A lentiviral construct expressing Cav1 (LV-Cav1) or containing a short hairpin RNA against Cav1 (LV-shCav1) was used to overexpress or knock down Cav1 expression respectively, in the dorsal striatum. Under a fixed-ratio schedule, LV-Cav1 enhanced and LV-shCav1 reduced responding for methamphetamine in an extended access paradigm compared to LV-GFP controls. LV-Cav1 and LV-shCav1 also produced an upward and downward shift in a dose–response paradigm, generating a drug vulnerable/resistant phenotype. LV-Cav1 and LV-shCav1 did not alter responding for sucrose. Under a progressive-ratio schedule, LV-shCav1 generally reduced positive-reinforcing effects of methamphetamine and sucrose as seen by reduced breakpoints. Western blotting confirmed enhanced Cav1 expression in LV-Cav1 rats and reduced Cav1 expression in LV-shCav1 rats. Electrophysiological findings in LV-GFP rats demonstrated an absence of high-frequency stimulation (HFS)-induced long-term potentiation (LTP) in the dorsal striatum after extended access methamphetamine self-administration, indicating methamphetamine-induced occlusion of plasticity. LV-Cav1 prevented methamphetamine-induced plasticity via increasing phosphorylation of calcium calmodulin kinase II, suggesting a mechanism for addiction vulnerability. LV-shCav1 produced a marked deficit in the ability of HFS to produce LTP and, therefore, extended access methamphetamine was unable to alter striatal plasticity, indicating a mechanism for resistance to addiction-like behavior. Our results demonstrate that Cav1 expression and knockdown driven striatal plasticity assist with modulating addiction to drug and nondrug rewards, and inspire new strategies to reduce psychostimulant addiction.


2019 ◽  
Vol 9 (22) ◽  
pp. 4784
Author(s):  
Vietsch ◽  
Peran ◽  
Suker ◽  
van den Bosch ◽  
Sijde ◽  
...  

Clinical follow-up aided by changes in the expression of circulating microRNAs (miRs) may improve prognostication of pancreatic ductal adenocarcinoma (PDAC) patients. Changes in 179 circulating miRs due to cancer progression in the transgenic KrasG12D/+; Trp53R172H/+; P48-Cre (KPC) animal model of PDAC were analyzed for serum miRs that are altered in metastatic disease. In addition, expression levels of 250 miRs were profiled before and after pancreaticoduodenectomy in the serum of two patients with resectable PDAC with different progression free survival (PFS) and analyzed for changes indicative of PDAC recurrence after resection. Three miRs that were upregulated ≥3-fold in progressive PDAC in both mice and patients were selected for validation in 26 additional PDAC patients before and after resection. We found that high serum miR-125b-5p and miR-99a-5p levels after resection are significantly associated with shorter PFS (HR 1.34 and HR 1.73 respectively). In situ hybridization for miR detection in the paired resected human PDAC tissues showed that miR-125b-5p and miR-99a-5p are highly expressed in inflammatory cells in the tumor stroma, located in clusters of CD79A expressing cells of the B-lymphocyte lineage. In conclusion, we found that circulating miR-125b-5p and miR-99a-5p are potential immune-cell related prognostic biomarkers in PDAC patients after surgery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cristian Scatena ◽  
Giovanni Fanelli ◽  
Giuseppe Nicolò Fanelli ◽  
Michele Menicagli ◽  
Paolo Aretini ◽  
...  

AbstractRecent evidence suggests that a loss of expression of caveolin in the stromal compartment (sCav-1) of human invasive breast carcinoma (IBC) may be a predictor of disease recurrence, metastasis and poor outcome. At present, there is little knowledge regarding the expression of sCav-1 at the metastatic sites. We therefore studied sCav-1 expression in IBCs and in their axillary lymph nodes to seek a correlation with cancer metastasis. 189 consecutive invasive IBCs (53 with axillary lymph node metastases and 136 without) were studied by immunohistochemistry, using a rabbit polyclonal anti-Cav-1 antibody. In IBCs sCav-1 was evaluated in fibroblasts scattered in the tumor stroma whereas in lymph nodes sCav-1 was assessed in fibroblast-like stromal cells. For the first time, we observed a statistically significant progressive loss of sCav-1 from normal/reactive axillary lymph nodes of tumors limited to the breast to metastatic axillary lymph nodes, through normal/reactive axillary lymph nodes of tumors with axillary metastatic spread. These data indicate that Cav-1 expressed by the stromal compartment of lymph nodes, somehow, may possibly contribute to metastatic spread in IBC.


2021 ◽  
Vol 10 (10) ◽  
pp. 2219
Author(s):  
Monika Prill ◽  
Agnieszka Karkucinska-Wieckowska ◽  
Magdalena Lebiedzinska-Arciszewska ◽  
Giampaolo Morciano ◽  
Agata Charzynska ◽  
...  

Numerous papers have reported altered expression patterns of Ras and/or ShcA proteins in different types of cancers. Their level can be potentially associated with oncogenic processes. We analyzed samples of pediatric brain tumors reflecting different groups such as choroid plexus tumors, diffuse astrocytic and oligodendroglial tumors, embryonal tumors, ependymal tumors, and other astrocytic tumors as well as tumor malignancy grade, in order to characterize the expression profile of Ras, TrkB, and three isoforms of ShcA, namely, p66Shc, p52Shc, and p46Shc proteins. The main aim of our study was to evaluate the potential correlation between the type of pediatric brain tumors, tumor malignancy grade, and the expression patterns of the investigated proteins.


Sign in / Sign up

Export Citation Format

Share Document