scholarly journals The Role of Exosomes in Pancreatic Cancer From Bench to Clinical Application: An Updated Review

2021 ◽  
Vol 11 ◽  
Author(s):  
Kai Chen ◽  
Qi Wang ◽  
Marko Kornmann ◽  
Xiaodong Tian ◽  
Yinmo Yang

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most dismal gastrointestinal malignancies with an overall 5-year survival rate of 8%–9%. The intra-tumor heterogeneity and special tumor microenvironment in PDAC make it challenging to develop effective treatment strategies. Exosomes are extracellular vesicles that originate from the endosomes and have a diameter of 40–160 nm. A growing body of evidence has shown that exosomes play vital roles in tumor initiation and development. Recently, extensive application of exosomes as biomarkers and drug carriers has rendered them attractive in the field of PDAC. This review summarizes the latest progress in the methodologies for isolation, modification, and tracking of exosomes, exosome-mediated cell-to-cell communication, clinical applications of exosome as minimally invasive liquid biopsy and drugs carriers, as well as their involvement in the angiogenic regulation in PDAC. In spite of these advancements, some obstacles are still required to be overcome to use the exosome-based technologies for early diagnosis or improvement of prognosis of patients with PDAC.

2021 ◽  
Vol 2 (2) ◽  
pp. 82-93
Author(s):  
Luca Digiacomo ◽  
Francesca Giulimondi ◽  
Daniela Pozzi ◽  
Alessandro Coppola ◽  
Vincenzo La Vaccara ◽  
...  

Due to late diagnosis, high incidence of metastasis, and poor survival rate, pancreatic cancer is one of the most leading cause of cancer-related death. Although manifold recent efforts have been done to achieve an early diagnosis of pancreatic cancer, CA-19.9 is currently the unique biomarker that is adopted for the detection, despite its limits in terms of sensitivity and specificity. To identify potential protein biomarkers for pancreatic ductal adenocarcinoma (PDAC), we used three model liposomes as nanoplatforms that accumulate proteins from human plasma and studied the composition of this biomolecular layer, which is known as protein corona. Indeed, plasma proteins adsorb on nanoparticle surface according to their abundance and affinity to the employed nanomaterial, thus even small differences between healthy and PDAC protein expression levels can be, in principle, detected. By mass spectrometry experiments, we quantified such differences and identified possible biomarkers for PDAC. Some of them are already known to exhibit different expressions in PDAC proteomes, whereas the role of other relevant proteins is still not clear. Therefore, we predict that the employment of nanomaterials and their protein corona may represent a useful tool to amplify the detection sensitivity of cancer biomarkers, which may be used for the early diagnosis of PDAC, with clinical implication for the subsequent therapy in the context of personalized medicine.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 901
Author(s):  
Ramiz S. Ahmad ◽  
Timothy D. Eubank ◽  
Slawomir Lukomski ◽  
Brian A. Boone

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of only 9%. PDAC is characterized by a dense, fibrotic stroma composed of extracellular matrix (ECM) proteins. This desmoplastic stroma is a hallmark of PDAC, representing a significant physical barrier that is immunosuppressive and obstructs penetration of cytotoxic chemotherapy agents into the tumor microenvironment (TME). Additionally, dense ECM promotes hypoxia, making tumor cells refractive to radiation therapy and alters their metabolism, thereby supporting proliferation and survival. In this review, we outline the significant contribution of fibrosis to the pathogenesis of pancreatic cancer, with a focus on the cross talk between immune cells and pancreatic stellate cells that contribute to ECM deposition. We emphasize the cellular mechanisms by which neutrophils and macrophages, specifically, modulate the ECM in favor of PDAC-progression. Furthermore, we investigate how activated stellate cells and ECM influence immune cells and promote immunosuppression in PDAC. Finally, we summarize therapeutic strategies that target the stroma and hinder immune cell promotion of fibrogenesis, which have unfortunately led to mixed results. An enhanced understanding of the complex interactions between the pancreatic tumor ECM and immune cells may uncover novel treatment strategies that are desperately needed for this devastating disease.


2021 ◽  
Vol 10 (23) ◽  
pp. 5624
Author(s):  
Jaroslaw Daniluk ◽  
Urszula Daniluk ◽  
Pawel Rogalski ◽  
Andrzej Dabrowski ◽  
Agnieszka Swidnicka-Siergiejko

Pancreatic ductal adenocarcinoma is one of the deadliest human neoplasms. Despite the development of new surgical and adjuvant therapies, the prognosis remains very poor, with the overall survival rate not exceeding 9%. There is now increasing evidence that the human microbiome, which is involved in many physiological functions, including the regulation of metabolic processes and the modulation of the immune system, is possibly linked to pancreatic oncogenesis. However, the exact mechanisms of action are poorly understood. Our review summarizes the current understanding of how the microbiome affects pancreatic cancer development and progression. We discuss potential pathways of microbe translocation to the pancreas, as well as the mechanism of their action. We describe the role of the microbiome as a potential marker of pancreatic cancer diagnosis, progression, and survival. Finally, we discuss the possibilities of modifying the microbiome to improve treatment effectiveness for this deadly disease.


Author(s):  
Cong He ◽  
Luoyan Sheng ◽  
Deshen Pan ◽  
Shuai Jiang ◽  
Li Ding ◽  
...  

High-grade glioma is one of the most lethal human cancers characterized by extensive tumor heterogeneity. In order to identify cellular and molecular mechanisms that drive tumor heterogeneity of this lethal disease, we performed single-cell RNA sequencing analysis of one high-grade glioma. Accordingly, we analyzed the individual cellular components in the ecosystem of this tumor. We found that tumor-associated macrophages are predominant in the immune microenvironment. Furthermore, we identified five distinct subpopulations of tumor cells, including one cycling, two OPC/NPC-like and two MES-like cell subpopulations. Moreover, we revealed the evolutionary transition from the cycling to OPC/NPC-like and MES-like cells by trajectory analysis. Importantly, we found that SPP1/CD44 interaction plays a critical role in macrophage-mediated activation of MES-like cells by exploring the cell-cell communication among all cellular components in the tumor ecosystem. Finally, we showed that high expression levels of both SPP1 and CD44 correlate with an increased infiltration of macrophages and poor prognosis of glioma patients. Taken together, this study provided a single-cell atlas of one high-grade glioma and revealed a critical role of macrophage-mediated SPP1/CD44 signaling in glioma progression, indicating that the SPP1/CD44 axis is a potential target for glioma treatment.


Author(s):  
Camila Juliano Salvador Rodrigues ◽  
Elita Ferreira da Silveira ◽  
Rafael da Silveira Vargas ◽  
Giordano Gatti de Giacomo ◽  
Marino Muxfeldt Bianchin

Background: Cancer stem cells, also known as tumor-initiating cells, are suggested to be responsible for drug resistance and cancer development due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Objective: This study was designed to investigate the role of cancer stem cells in pancreatic cancer. Methods: A retrospective clinicopathological analysis was undertaken in 112 patients diagnosed with pancreatic ductal adenocarcinoma between 2005 and 2010, and immunohistochemistry was performed with antibodies against CD133, CD24, and OCT4. Positive nuclear, cytoplasmic or membrane staining for each antibody was rated on staining intensity, being classified into low/moderate or strong staining groups. Results were analyzed relative to each patient’s clinicopathological parameters. Results: There was an established relationship between the staining of the markers with some variables associated with worse prognosis, being the three markers present in most tumor cells and associated with tumor progression. We suppose that cancer stem cells are present from the beginning of tumor initiation and are intrinsically related to tumor development. Although the presence of stem cells has been associated with molecular biology of various tumors, their expression in pancreatic cancer has not yet been clinically reported. Conclusion: The presence of stem cells and their role in pancreatic cancer tumorigenesis may be considered as valuable prognostic factors, although the mechanism involved needs further investigation. Increasing insights into role of cancer stem cells and carcinogenesis can ultimately generate new ideas for molecularly based diagnostic and therapeutic approaches.


2022 ◽  
Vol 23 (2) ◽  
pp. 930
Author(s):  
Ba Da Yun ◽  
Ye Ji Choi ◽  
Seung Wan Son ◽  
Gabriel Adelman Cipolla ◽  
Fernanda Costa Brandão Berti ◽  
...  

Circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) are differentially expressed in gastrointestinal cancers. These noncoding RNAs (ncRNAs) regulate a variety of cellular activities by physically interacting with microRNAs and proteins and altering their activity. It has also been suggested that exosomes encapsulate circRNAs and lncRNAs in cancer cells. Exosomes are then discharged into the extracellular environment, where they are taken up by other cells. As a result, exosomal ncRNA cargo is critical for cell–cell communication within the cancer microenvironment. Exosomal ncRNAs can regulate a range of events, such as angiogenesis, metastasis, immune evasion, drug resistance, and epithelial-to-mesenchymal transition. To set the groundwork for developing novel therapeutic strategies against gastrointestinal malignancies, a thorough understanding of circRNAs and lncRNAs is required. In this review, we discuss the function and intrinsic features of oncogenic circRNAs and lncRNAs that are enriched within exosomes.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4844
Author(s):  
Mareike Waldenmaier ◽  
Tanja Seibold ◽  
Thomas Seufferlein ◽  
Tim Eiseler

Even with all recent advances in cancer therapy, pancreatic cancer still has a dismal 5-year survival rate of less than 7%. The most prevalent tumor subtype is pancreatic ductal adenocarcinoma (PDAC). PDACs display an extensive crosstalk with their tumor microenvironment (TME), e.g., pancreatic stellate cells, but also immune cells to regulate tumor growth, immune evasion, and metastasis. In addition to crosstalk in the local TME, PDACs were shown to induce the formation of pre-metastatic niches in different organs. Recent advances have attributed many of these interactions to intercellular communication by small extracellular vesicles (sEVs, exosomes). These nanovesicles are derived of endo-lysosomal structures (multivesicular bodies) with a size range of 30–150 nm. sEVs carry various bioactive cargos, such as proteins, lipids, DNA, mRNA, or miRNAs and act in an autocrine or paracrine fashion to educate recipient cells. In addition to tumor formation, progression, and metastasis, sEVs were described as potent biomarker platforms for diagnosis and prognosis of PDAC. Advances in sEV engineering have further indicated that sEVs might once be used as effective drug carriers. Thus, extensive sEV-based communication and applications as platform for biomarker analysis or vehicles for treatment suggest a major impact of sEVs in future PDAC research.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Chen ◽  
Cui-Cui Zhao ◽  
Fei-Ran Chen ◽  
Guo-Wei Feng ◽  
Fei Luo ◽  
...  

Background. Pancreatic cancer is a malignant tumor of the digestive tract, which is difficult to diagnose and treat due to bad early diagnosis. We aimed to explore the role of kinesin superfamily 4A (KIF4A) in pancreatic ductal adenocarcinoma (PDAC). Methods. We first used the bioinformatic website to screen the data of pancreatic cancer in TCGA, and KIF4A protein was detected among the 86 specimens of patients in our hospital combined with clinic-pathological characteristics and survival analysis. KIF4A loss-expression cell lines were established by RNA interference (RNAi). In addition, we performed in vitro cell assays to detect the changes in cell proliferation, migration, and invasion. The proteins involved in the proliferation and metastasis of cancer cells were also detected by western blot. The above results could be proved in vivo. Further, the correlation between KIF4A and CDC5L was analyzed by TCGA and IHC data. Results. We first found a high expression of KIF4A in pancreatic cancer, suggesting a role of KIF4A in the development of pancreatic cancer. KIF4A was found to be differentially expressed ( P < 0.05 ) among the 86 specimens of patients in our hospital and was significantly associated with PDAC TNM stages and tumor size. High KIF4A expression also significantly worsened overall survival (OS) and disease-free survival rate (DFS) ( P < 0.05 , respectively). In addition, cell proliferation, migration, and invasion were inhibited by the KIF4A-shRNA group compared with the control ( P < 0.05 , respectively). In the end, knockdown of KIF4A could inhibit tumor development and metastasis in vivo. Further, the positive correlation between KIF4A and CDC5L existed, and KIF4A might promote pancreatic cancer proliferation by affecting CDC5L expression. Conclusion. In conclusion, the high expression level of KIF4A in PDAC was closely related to poor clinical and pathological status, lymphatic metastasis, and vascular invasion. KIF4A might be involved in promoting the development of PDAC in vitro and in vivo, which might be a new therapeutic target of PDAC.


2017 ◽  
Author(s):  
Gregory C Wilson ◽  
Brent T Xia ◽  
Syed A Ahmed

Despite decades of advancement and research into the multimodal care of pancreatic cancer, mortality after the diagnosis of pancreatic ductal adenocarcinoma remains grim. The role of adjuvant therapy following surgical resection has been well established in the literature. However, adjuvant therapy is imperfect, and outside of a clinical trial, there are high rates of omission or delayed initiation of therapy. Neoadjuvant treatment strategies continue to be explored in the management of resectable, borderline-resectable, and locally advanced unresectable pancreatic adenocarcinoma. With improved resection rates and the possibility for tumor downstaging, neoadjuvant therapy has become standard for patients with borderline-resectable and locally advanced unresectable tumors. Additional benefits of neoadjuvant therapy in the treatment of resectable tumors include improved completion rates of systemic therapy and R0 resection rates. Future clinical trials, including the use of novel treatment agents and combination treatment strategies in both neoadjuvant and adjuvant regimens, will add value to the treatment of pancreatic adenocarcinoma. Key words: adjuvant therapy, borderline-resectable pancreatic cancer, locally advanced pancreatic cancer, neoadjuvant therapy, pancreatic adenocarcinoma, resectable disease 


2021 ◽  
Vol 135 (10) ◽  
pp. 1289-1293
Author(s):  
Gregor Werba ◽  
Tamas A. Gonda

Abstract Pancreatic ductal adenocarcinoma (PDAC) features a hostile tumor microenvironment (TME) that renders it remarkably resistant to most therapeutic interventions. Consequently, survival remains among the poorest compared with other gastrointestinal cancers. Concerted efforts are underway to decipher the complex PDAC TME, break down barriers to efficacious therapies and identify novel treatment strategies. In the recent Clinical Science, Li and colleagues identify the long noncoding RNA KLHDC7B-DT as a crucial epigenetic regulator of IL-6 transcription in PDAC and illustrate its potent influences on the pancreatic TME. In this commentary, we introduce epigenetics in pancreatic cancer and put the findings by Li et al. in context with current knowledge.


Sign in / Sign up

Export Citation Format

Share Document