scholarly journals Method of Multilevel Adaptive Synthesis of Monitoring Object Knowledge Graphs

2021 ◽  
Vol 11 (14) ◽  
pp. 6251
Author(s):  
Kirill Krinkin ◽  
Alexander Vodyaho ◽  
Igor Kulikov ◽  
Nataly Zhukova

The paper introduces a method for adaptive deductive synthesis of state models, of complex objects, with multilevel variable structures. The method makes it possible to predict the state of objects using the data coming from them. The data from the objects are collected with sensors installed on them. Multilevel knowledge graphs (KG) are used to describe the observed objects. The new adaptive synthesis method develops previously proposed inductive and deductive synthesis methods, allowing the context to be taken into account when predicting the states of the monitored objects based on the data obtained from them. The article proposes the algorithm for the suggested method and presents its computational complexity analysis. The software system, based on the proposed method, and the algorithm for multilevel adaptive synthesis of the object models developed, are described in the article. The effectiveness of the proposed method is shown in the results from modeling the states of telecommunication networks of cable television operators.

Author(s):  
Kirill Krinkin ◽  
Alexander Ivanovich Vodyaho ◽  
Igor Kulikov ◽  
Nataly Zhukova

The article focuses on developing of a deductive synthesis method for building telecommunications networks (TN) hierarchical knowledge graphs (KG). Synthesized KGs can be used to solve search, analytical, and recommendation (forecast) problems. TNs are complex heterogeneous objects. The synthesis of knowledge graphs of such objects requires much computational resources. The proposed method provides a low complexity of the synthesis of KG of TN by taking into account their hierarchical structure. The authors propose to do synthesis by direct downward multilevel inference and reverse multilevel inference. The article analyses existing graph models of TNs and methods for their building. Detailed description of the proposed method of networks hierarchical KGs synthesis is given. In order to evaluate the deductive synthesis method, a prototype of the system is developed. The provided real-world example shows how telecommunications networks hierarchical knowledge graphs are synthesized and used in practice. Finally, conclusions are formulated, and the areas of further research are identified.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2475
Author(s):  
Amirah Shafilla Mohamad Kasim ◽  
Arbakariya Bin Ariff ◽  
Rosfarizan Mohamad ◽  
Fadzlie Wong Faizal Wong

Silver nanoparticles (AgNPs) have been found to have extensive biomedical and biological applications. They can be synthesised using chemical and biological methods, and coated by polymer to enhance their stability. Hence, the changes in the physico-chemical characteristics of AgNPs must be scrutinised due to their importance for biological activity. The UV-Visible absorption spectra of polyethylene glycol (PEG) -coated AgNPs displayed a distinctive narrow peak compared to uncoated AgNPs. In addition, High-Resolution Transmission Electron Microscopy analysis revealed that the shapes of all AgNPs, were predominantly spherical, triangular, and rod-shaped. Fourier-Transform Infrared Spectroscopy analysis further confirmed the role of PEG molecules in the reduction and stabilisation of the AgNPs. Moreover, dynamic light scattering analysis also revealed that the polydispersity index values of PEG-coated AgNPs were lower than the uncoated AgNPs, implying a more uniform size distribution. Furthermore, the uncoated and PEG-coated biologically synthesised AgNPs demonstrated antagonisms activities towards tested pathogenic bacteria, whereas no antagonism activity was detected for the chemically synthesised AgNPs. Overall, generalisation on the interrelations of synthesis methods, PEG coating, characteristics, and antimicrobial activity of AgNPs were established in this study.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3876
Author(s):  
Jesús Valdés ◽  
Daniel Reséndiz ◽  
Ángeles Cuán ◽  
Rufino Nava ◽  
Bertha Aguilar ◽  
...  

The effect of microwave radiation on the hydrothermal synthesis of the double perovskite Sr2FeMoO6 has been studied based on a comparison of the particle size and structural characteristics of products from both methods. A temperature, pressure, and pH condition screening was performed, and the most representative results of these are herein presented and discussed. Radiation of microwaves in the hydrothermal synthesis method led to a decrease in crystallite size, which is an effect from the reaction temperature. The particle size ranged from 378 to 318 nm when pH was 4.5 and pressure was kept under 40 bars. According to X-ray diffraction (XRD) results coupled with the size-strain plot method, the product obtained by both synthesis methods (with and without microwave radiation) have similar crystal purity. The Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) techniques showed that the morphology and the distribution of metal ions are uniform. The Curie temperature obtained by thermogravimetric analysis indicates that, in the presence of microwaves, the value was higher with respect to traditional synthesis from 335 K to 342.5 K. Consequently, microwave radiation enhances the diffusion and nucleation process of ionic precursors during the synthesis, which promotes a uniform heating in the reaction mixture leading to a reduction in the particle size, but keeping good crystallinity of the double perovskite. Precursor phases and the final purity of the Sr2FeMoO6 powder can be controlled via hydrothermal microwave heating on the first stages of the Sol-Gel method.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1040 ◽  
Author(s):  
Getachew Solomon ◽  
Raffaello Mazzaro ◽  
Vittorio Morandi ◽  
Isabella Concina ◽  
Alberto Vomiero

Molybdenum sulfide (MoS2) has emerged as a promising catalyst for hydrogen evolution applications. The synthesis method mainly employed is a conventional hydrothermal method. This method requires a longer time compared to other methods such as microwave synthesis methods. There is a lack of comparison of the two synthesis methods in terms of crystal morphology and its electrochemical activities. In this work, MoS2 nanosheets are synthesized using both hydrothermal (HT-MoS2) and advanced microwave methods (MW-MoS2), their crystal morphology, and catalytical efficiency towards hydrogen evolution reaction (HER) were compared. MoS2 nanosheet is obtained using microwave-assisted synthesis in a very short time (30 min) compared to the 24 h hydrothermal synthesis method. Both methods produce thin and aggregated nanosheets. However, the nanosheets synthesized by the microwave method have a less crumpled structure and smoother edges compared to the hydrothermal method. The as-prepared nanosheets are tested and used as a catalyst for hydrogen evolution results in nearly similar electrocatalytic performance. Experimental results showed that: HT-MoS2 displays a current density of 10 mA/cm2 at overpotential (−280 mV) compared to MW-MoS2 which requires −320 mV to produce a similar current density, suggesting that the HT-MoS2 more active towards hydrogen evolutions reaction.


Author(s):  
ZHIJIAN WANG ◽  
WENRUI LI ◽  
PENGCHENG ZHANG

The scenario-based specifications are popularly used to capture user requirements. The state-based specifications are very appropriate to capture system design. Recently, there has been increased research interest in connecting these two kinds of specifications, called synthesis. Synthesis is a way to automatically construct the state-based specifications from the scenario-based specifications. There are two kinds of synthesis methods: global synthesis and local synthesis. Global synthesis means constructing a state-based specification for the whole system from the scenario-based specifications, while local synthesis means constructing a state-based specification for each object in the system. The two different synthesis methods have different uses and need to be systematically compared. The contributions of this paper are twofold. Firstly, we propose an improved method supporting the global and the local synthesis of state machines (a kind of state-based specifications) by using a novel algorithm for state machine execution and an algorithm similar to operator priority analysis method, which can fully automate the process of synthesis. Our synthesis method also satisfies two important properties: completeness and soundness. Secondly, to the best of our knowledge, our work does the first attempt to systematically compare global synthesis with local synthesis, and shows some insightful results of the experimental comparison between the two kinds of synthesis methods, which are valuable for the practitioners to choose an appropriate synthesis method for the analysis and verification of the system.


CONVERTER ◽  
2021 ◽  
pp. 861-867
Author(s):  
Heng Ma

Vinyl acetate is an organic chemical raw material of great industrial value. It is widely used in synthetic film, adhesive, coating and textile slurry. The production route of vinyl acetate is introduced, and the advantages and disadvantages of synthesis methods of vinyl acetate method, acetylene method, EDA cracking method, base synthesis method and Halcon method are compared. The method of carbide acetylene has high economic efficiency, low energy consumption and good environmental protection, proposing the development direction of ethylene acetate production technology.


2021 ◽  
Vol 335 ◽  
pp. 03008
Author(s):  
Khizar Mushtaq ◽  
Pui May Chou ◽  
Chin Wei Lai

Tungsten being a transition element, forms oxide compounds of various oxidation states that enables it to form nanocolloids of tungsten oxide dihydrate. Multiple methods have been used in recent years to synthesize nano tungsten oxide dihydrate, including sol-gel synthesis, electrochemical deposition, hydrothermal synthesis and anodization. However, a universally accepted synthesis method for this material is not offered. The most appropriate method and its corresponding processing parameters for the synthesis of nano tungsten oxide dihydrate colloids were presented in the present study. The objective of the present study was to investigate the effect of processing parameters, i.e. applied voltage, temperature and anodizing duration on the particle size of nanocolloids. It is found that anodization is the easiest, efficient, and cost-effective method to synthesize the colloidal solution of nano tungsten oxide dihydrate. Conducting the synthesis at room temperature at a voltage of 50 V for 60 minutes yields the product with particle size of 40 – 60 nm, which can be used in wide array of applications. This paper also highlights the research gaps for future work and gives recommendations to extend this study particularly for the industrial application of tungsten oxide.


2021 ◽  
Vol 12 (2) ◽  
pp. 1061-1071
Author(s):  
Jinxi Chen ◽  
Jiejin Ding ◽  
Weiwei Hong ◽  
Rongjiang Cui

Abstract. A plane kinematic chain inversion refers to a plane kinematic chain with one link fixed (assigned as the ground link). In the creative design of mechanisms, it is important to select proper ground links. The structural synthesis of plane kinematic chain inversions is helpful for improving the efficiency of mechanism design. However, the existing structural synthesis methods involve isomorphism detection, which is cumbersome. This paper proposes a simple and efficient structural synthesis method for plane kinematic chain inversions without detecting isomorphism. The fifth power of the adjacency matrix is applied to recognize similar vertices, and non-isomorphic kinematic chain inversions are directly derived according to non-similar vertices. This method is used to automatically synthesize 6-link 1-degree-of-freedom (DOF), 8-link 1-DOF, 8-link 3-DOF, 9-link 2-DOF, 9-link 4-DOF, 10-link 1-DOF, 10-link 3-DOF and 10-link 5-DOF plane kinematic chain inversions. All the synthesis results are consistent with those reported in literature. Our method is also suitable for other kinds of kinematic chains.


MRS Advances ◽  
2017 ◽  
Vol 2 (60) ◽  
pp. 3709-3714
Author(s):  
Gustavo A. Saenz ◽  
Carlos de Anda Orea ◽  
Anupama B. Kaul

ABSTRACTTwo-dimensional layered materials, materials with weak out-of-plane van der Waals bonding and strong in-plane covalent bonding, have attracted special attention in recent years since the isolation and characterization of monolayer graphite, the graphene. The electrical bandgap in Transition Metal Di-Chalcogenides (TMDCs), non-existent in graphene, make them a good alternative family of materials for novel electronic and optoelectronic applications. 2H- MoS2, one of the most stable TMDCs, has been extensively studied, including the synthesis methods, and its potential applications in photodetection. The chemical vapor deposition (CVD) synthesis method has increased its potential over the years. The advantages of this method are scalability compared to micromechanical exfoliation, common process used in research laboratories, and the maintenance of the quality and intrinsic properties of the material compared to the liquid exfoliation methods. In this work, we synthesized high quality pristine 2H-MoS2 via atmospheric pressure chemical vapor deposition (APCVD) by vapor phase reaction of MoO3 and S powder precursors. The samples were characterized via Raman and photoluminescence (PL) spectroscopy and compared to mechanically exfoliated MoS2 crystal by measuring the full-width half maxima (FWHM) of monolayer and few-layer mesoscopic flakes. In addition, the CVD synthesized single and few-layered MoS2 domains were transferred to different substrates using a high yield process, including a flexible substrate, preserving the quality of the material. Finally, and mechanically exfoliated MoS2 two-terminal photodetector was designed, fabricated, and measured. Demonstrating thus the capability of heterostructure fabrication and the quality of our synthesis and device fabrication process.


Author(s):  
R. S. Srinivasan ◽  
Kristin L. Wood

Abstract Tolerancing is a crucial problem for mechanical designers, as it has quality and cost implications on product design. Research in tolerancing has addressed specific areas of the problem. Building upon previous research, a unified approach for geometric tolerancing with fractal-based parameters has been recently proposed. This paper explores an alternative error profile analysis and synthesis method, based on wavelets, that maintains and extends the use of fractals for surface error abstraction. An overview of the theory of wavelets is provided, and the link between fractals and wavelets is established. Experimental data are used to illustrate the application of wavelet theory to surface profile reconstruction and synthesis. The synthesis methods are then implemented in the design of ball-bearing elements, demonstrating the utility of fractal-based tolerancing. Plans for further study and implementation conclude the paper.


Sign in / Sign up

Export Citation Format

Share Document