scholarly journals Studies on the Preparation of Nanoparticles from Betulin-Based Polyanhydrides

2021 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Daria Niewolik ◽  
Grzegorz Dzido ◽  
Katarzyna Jaszcz

Nanoparticles were obtained by nanoprecipitation and by emulsion solvent evaporation (ESE) method. In the ESE method, the size of the particles depended on the type and concentration of surfactant (in the water phase) and the polymer concentration (in the organic phase). The best results were obtained with ionic surfactants, however, the use of such compounds may accelerate the degradation process of polymers. In the nanoprecipitation method, the ratio of solvent (methylene chloride) to non-solvent (hexane) has a significant influence on the particle size. The smallest particles were obtained with a solvent to non-solvent ratio of 1:150.

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2925 ◽  
Author(s):  
Cristina Yus ◽  
Manuel Arruebo ◽  
Silvia Irusta ◽  
Victor Sebastián

The objective of the present work was to produce gastroresistant Eudragit® RS100 nanoparticles by a reproducible synthesis approach that ensured mono-disperse nanoparticles under the size of 100 nm. Batch and micromixing nanoprecipitation approaches were selected to produce the demanded nanoparticles, identifying the critical parameters affecting the synthesis process. To shed some light on the formulation of the targeted nanoparticles, the effects of particle size and homogeneity of fluid dynamics, and physicochemical parameters such as polymer concentration, type of solvent, ratio of solvent to antisolvent, and total flow rate were studied. The physicochemical characteristics of resulting nanoparticles were studied applying dynamic light scattering (DLS) particle size analysis and electron microscopy imaging. Nanoparticles produced using a micromixer demonstrated a narrower and more homogenous distribution than the ones obtained under similar conditions in conventional batch reactors. Besides, fluid dynamics ensured that the best mixing conditions were achieved at the highest flow rate. It was concluded that nucleation and growth events must also be considered to avoid uncontrolled nanoparticle growth and evolution at the collection vial. Further, rifampicin-encapsulated nanoparticles were prepared using both approaches, demonstrating that the micromixing-assisted approach provided an excellent control of the particle size and polydispersity index. Not only the micromixing-assisted nanoprecipitation promoted a remarkable control in the nanoparticle formulation, but also it enhanced drug encapsulation efficiency and loading, as well as productivity. To the best of our knowledge, this was the very first time that drug-loaded Eudragit® RS100 nanoparticles (NPs) were produced in a continuous fashion under 100 nm (16.5 ± 4.3 nm) using microreactor technology. Furthermore, we performed a detailed analysis of the influence of various fluid dynamics and physicochemical parameters on the size and uniformity of the resulting nanoparticles. According to these findings, the proposed methodology can be a useful approach to synthesize a myriad of nanoparticles of alternative polymers.


Author(s):  
Rajakumar Devara ◽  
Mohammed Habibuddin ◽  
Jithan Aukunuru

 Objective: The objective of this study was to prepare and evaluate itraconazole (ITZ) nanosuspensionsusing polymer Eudragit RL-100 and stabilizer Tween-80 by nanoprecipitation method.Materials and Methods: Itraconazole is a potent broad-spectrum Biopharmaceutical Classification System Class II triazole antifungal drug. Nanosuspensions were prepared using solvent displacement/nanoprecipitation method with the help of Eudragit RL-100 as rate-controlled polymer in different ratios and using Tween-80 as stabilizer. The nanosuspension preparation was optimized for particle size by investigating two factors that are solvent:anti-solvent ratio and surfactant concentration, at three levels. The prepared nanosuspensions were evaluated and characterized for particle size, drug excipient compatibility, percentage yield, drug entrapment efficiency, surface morphology, zeta potential, saturation solubility, solid state, and in vitro drug release studies.Results: The nanosuspensions of itraconazole were successfully prepared using solvent displacement/nanoprecipitation method. The two factors solvent: anti-solvent ratio and surfactant concentration influenced the particle size of the nanosuspensions prepared. The Fourier-transform infrared spectroscopy studies confirmed that drug and excipients are compatible, and the X-ray powdered diffraction and differential scanning calorimetry results indicated that the nanoprecipitation method led to the amorphization of itraconazole. Itraconazolenanosuspensions increased the saturation solubility to an extent of 4 times. Itraconazole nanosuspensions completely dissolved in the dissolution medium within 10 s and 72% drug release within 5 min, while the pure drug was dissolved only up to 20% in 15 min and nanosuspensions showed increased dissolution rate of 3 folds, the active drug.Conclusions: Stable itraconazole nanosuspensions were successfully prepared and these nanosuspensions demonstrated dramatic improvement in dissolution rate of the active drug.


Author(s):  
SHIVA KUMAR YELLANKI ◽  
SAI MANOJ A ◽  
MANGILAL T

Objective: The aim of the present research was to prepare metoprolol-loaded nanospheres. Metoprolol-loaded bovine albumin nanospheres were prepared by nanoprecipitation method. Metoprolol is beta-1-adrenergic receptor inhibitor specific to cardiac cells, thus producing negative chronotropic and ionotropic effect. Methods: Metoprolol nanospheres were prepared by nanoprecipitation method, using bovine serum albumin as polymer. The prepared nanospheres are evaluated for particle size evaluation, drug entrapment efficiency, and zeta potential. Drug-excipient compatibility was determined using Fourier-transform infrared spectroscopy. In vitro release and solubility of the drug from nanoparticles were determined. Results: The particle size of prepared metoprolol nanospheres was found to be always less than 200 nm. Maximum particle size was found to be 196±2.03 nm of batch 4 nanoparticles. Entrapment efficiency of prepared nanospheres was above 80% and maximum percentage entrapment efficiency was found to be 80.4±0.51%. It was found that the percentage entrapment efficiency and drug release were extended with increase in polymer concentration. Zeta potential of the optimized formulation was found to be −20.4 mV. In vitro drug release studies have shown the prolonged release of 94.5±0.54 up to 10 h. Drug release rate is extended with an increase in polymer concentration. Conclusion: Results have concluded that the albumin nanospheres loaded with metoprolol have reduced the blood pressure within 24 h and the prepared nanospheres are effective compared to other formulations and drug delivery.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 229
Author(s):  
Clara Luisa Domínguez-Delgado ◽  
Zubia Akhtar ◽  
Godfrey Awuah-Mensah ◽  
Braden Wu ◽  
Hugh David Charles Smyth

Emulsification-diffusion method is often used to produce polymeric nanoparticles. However, their numerous and/or lengthy steps make it difficult to use widely. Thus, a modified method using solvent blends (miscible/partially miscible in water, 25–100%) as the organic phases to overcome these disadvantages and its design space were investigated. To further simplify the process, no organic/aqueous phase saturation and no water addition after the emulsification step were performed. Biodegradable (PLGA) or pH-sensitive (Eudragit® E100) nanoparticles were robustly produced using low/medium shear stirring adding dropwise the organic phase into the aqueous phase or vice versa. Several behaviors were also obtained: lowering the partially water-miscible solvent ratio relative to the organic phase or the poloxamer-407 concentration; or increasing the organic phase polarity or the polyvinyl alcohol concentration produced smaller particle sizes/polydispersity. Nanoparticle zeta potential increased as the water-miscible solvent ratio increased. Poloxamer-407 showed better performance to decrease the particle size (~50 nm) at low concentrations (≤1%, w/v) compared with polyvinyl alcohol at 1–5% (w/v), but higher concentrations produced bigger particles/polydispersity (≥600 nm). Most important, an inverse linear correlation to predict the particle size by determining the solubility parameter was found. A rapid method to broadly prepare nanoparticles using straightforward equipment is provided.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3941
Author(s):  
Giorgia Germini ◽  
Leena Peltonen

The aim of the study was to prepare indomethacin nanocrystal-loaded, 3D-printed, fast-dissolving oral polymeric film formulations. Nanocrystals were produced by the wet pearl milling technique, and 3D printing was performed by the semi-solid extrusion method. Hydroxypropyl methyl cellulose (HPMC) was the film-forming polymer, and glycerol the plasticizer. In-depth physicochemical characterization was made, including solid-state determination, particle size and size deviation analysis, film appearance evaluation, determination of weight variation, thickness, folding endurance, drug content uniformity, and disintegration time, and drug release testing. In drug nanocrystal studies, three different stabilizers were tested. Poloxamer F68 produced the smallest and most homogeneous particles, with particle size values of 230 nm and PI values below 0.20, and was selected as a stabilizer for the drug-loaded film studies. In printing studies, the polymer concentration was first optimized with drug-free formulations. The best mechanical film properties were achieved for the films with HPMC concentrations of 2.85% (w/w) and 3.5% (w/w), and these two HPMC levels were selected for further drug-loaded film studies. Besides, in the drug-loaded film printing studies, three different drug levels were tested. With the optimum concentration, films were flexible and homogeneous, disintegrated in 1 to 2.5 min, and released the drug in 2–3 min. Drug nanocrystals remained in the nano size range in the polymer films, particle sizes being in all film formulations from 300 to 500 nm. When the 3D-printed polymer films were compared to traditional film-casted polymer films, the physicochemical behavior and pharmaceutical performance of the films were very similar. As a conclusion, 3D printing of drug nanocrystals in oral polymeric film formulations is a very promising option for the production of immediate-release improved- solubility formulations.


Author(s):  
Sejal Patel ◽  
Anita P. Patel

In the interest of administration of dosage form oral route is most desirable and preferred method. After oral administration to get maximum therapeutic effect, major challenge is their water solubility. Water insoluble drug indicate insufficient bioavailability as well dissolution resulting in fluctuating plasma level. Benidipine (BND) is poorly water soluble antihypertensive drug has lower bioavailability. To improve bioavailability of Benidipine HCL, BND nanosuspension was formulated using media milling technique. HPMC E5 was used to stabilize nanosuspension. The effect of different important process parameters e.g. selection of polymer concentration X1(1.25 mg), stirring time X2 (800 rpm), selection of zirconium beads size X3 (0.4mm) were investigated by 23 factorial design to accomplish desired particle size and saturation solubility. The optimized batch had 408 nm particle size Y1, and showed in-vitro dissolution Y2 95±0.26 % in 30 mins and Zeta potential was -19.6. Differential scanning calorimetry (DSC) and FT-IR analysis was done to confirm there was no interaction between drug and polymer.


2015 ◽  
Vol 76 (5) ◽  
Author(s):  
N. Aniza ◽  
S. Hassan ◽  
M. F. M. Nor ◽  
K. E. Kee ◽  
Aklilu T.

Thermal degradation of Poultry Processing Dewatered Sludge (PPDS) was studied using thermogravimetric analysis (TGA) method. The effect of particle size on PPDS samples and operational condition such as heating rates were investigated. The non-isothermal TGA was run under a constant flow of oxygen at a rate of 30 mL/min with temperature ranging from 30ºC to 800ºC. Four sample particle sizes ranging between 0.425 mm to 2 mm, and heating rate between 5 K/min to 20 K/min were used in this study. The TGA results showed that particle size does not have any significant effect on the thermogravimetry (TG) curves at the initial stage, but the TG curves started to separate explicitly at the second stage. Particle size may affect the reactivity of sample and combustion performance due to the heat transfer and temperature gradient. The TG and peak of derivative thermogravimetry (DTG) curves tend to alter at high temperature when heating rate is increased most likely due to the limitation of mass transfer and the delay of degradation process. 


2016 ◽  
Vol 30 (2) ◽  
pp. 237-243 ◽  
Author(s):  
Karolina Szulc ◽  
Andrzej Lenart

Abstract The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.


2012 ◽  
Vol 2 (1) ◽  
pp. 8 ◽  
Author(s):  
Santanu Chakraborty ◽  
Priyanka Nayak ◽  
Bala Murali Krishna ◽  
Madhusmruti Khandai ◽  
Ashoke Kumar Ghosh

The aim of the present research work was to fabricate aceclofenac loaded pectinate microspheres by ionic gelation method and evaluate the effect of different cross-linking agents and polymer concentration on particle size, encapsulation efficacy and drug release behavior. It was also investigated that whether this pectinate dosage form was able to target the drug release in intestinal region and prevent the different side effect associated with the drug in stomach or not. It was observed that particle size, encapsulation efficacy and in vitro drug release were largely depended on polymer concentration and cross-linking agents. It was also observed that pectinate microspheres showed excellent pH depended mucoadhesive properties and they were able to restrict the drug release in stomach. <em>In vitro</em> drug release study showed that alminium-pectinate microspheres have more sustaining property as compared to barium-pectinate microspheres. Holm-Sidak multiple comparison analysis suggested a significant difference in measured t<sub>50%</sub> values among all the formulations with same cross-linking agent. In vivo studies revealed that the anti inflammatory and analgesic effects induced by pectinate microspheres were significantly high and prolonged as compared to pure drug. So, pectinate microspheres can be an excellent carrier for targeting the delivery of aceclofenac as well as help in improving the patient compliance by prolonging the systemic absorption.


CrystEngComm ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. 512-516 ◽  
Author(s):  
Jian-Chao Si ◽  
Yan Xing ◽  
Ming-Li Peng ◽  
Chao Zhang ◽  
Norbert Buske ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document