scholarly journals Distinct Shades of Adipocytes Control the Metabolic Roles of Adipose Tissues: From Their Origins to Their Relevance for Medical Applications

Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 40
Author(s):  
Annie Ladoux ◽  
Pascal Peraldi ◽  
Bérengère Chignon-Sicard ◽  
Christian Dani

Adipose tissue resides in specific depots scattered in peripheral or deeper locations all over the body and it enwraps most of the organs. This tissue is always in a dynamic evolution as it must adapt to the metabolic demand and constraints. It exhibits also endocrine functions important to regulate energy homeostasis. This complex organ is composed of depots able to produce opposite functions to monitor energy: the so called white adipose tissue acts to store energy as triglycerides preventing ectopic fat deposition while the brown adipose depots dissipate it. It is composed of many cell types. Different types of adipocytes constitute the mature cells specialized to store or burn energy. Immature adipose progenitors (AP) presenting stem cells properties contribute not only to the maintenance but also to the expansion of this tissue as observed in overweight or obese individuals. They display a high regeneration potential offering a great interest for cell therapy. In this review, we will depict the attributes of the distinct types of adipocytes and their contribution to the function and metabolic features of adipose tissue. We will examine the specific role and properties of distinct depots according to their location. We will consider their cellular heterogeneity to present an updated picture of this sophisticated tissue. We will also introduce new trends pointing out a rational targeting of adipose tissue for medical applications.

2021 ◽  
Vol 12 ◽  
Author(s):  
Kasiphak Kaikaew ◽  
Aldo Grefhorst ◽  
Jenny A. Visser

Excessive fat accumulation in the body causes overweight and obesity. To date, research has confirmed that there are two types of adipose tissue with opposing functions: lipid-storing white adipose tissue (WAT) and lipid-burning brown adipose tissue (BAT). After the rediscovery of the presence of metabolically active BAT in adults, BAT has received increasing attention especially since activation of BAT is considered a promising way to combat obesity and associated comorbidities. It has become clear that energy homeostasis differs between the sexes, which has a significant impact on the development of pathological conditions such as type 2 diabetes. Sex differences in BAT activity may contribute to this and, therefore, it is important to address the underlying mechanisms that contribute to sex differences in BAT activity. In this review, we discuss the role of sex hormones in the regulation of BAT activity under physiological and some pathological conditions. Given the increasing number of studies suggesting a crosstalk between sex hormones and the hypothalamic-pituitary-adrenal axis in metabolism, we also discuss this crosstalk in relation to sex differences in BAT activity.


2019 ◽  
Vol 40 (4) ◽  
pp. 1092-1107 ◽  
Author(s):  
Julian M Yabut ◽  
Justin D Crane ◽  
Alexander E Green ◽  
Damien J Keating ◽  
Waliul I Khan ◽  
...  

Abstract Serotonin is a phylogenetically ancient biogenic amine that has played an integral role in maintaining energy homeostasis for billions of years. In mammals, serotonin produced within the central nervous system regulates behavior, suppresses appetite, and promotes energy expenditure by increasing sympathetic drive to brown adipose tissue. In addition to these central circuits, emerging evidence also suggests an important role for peripheral serotonin as a factor that enhances nutrient absorption and storage. Specifically, glucose and fatty acids stimulate the release of serotonin from the duodenum, promoting gut peristalsis and nutrient absorption. Serotonin also enters the bloodstream and interacts with multiple organs, priming the body for energy storage by promoting insulin secretion and de novo lipogenesis in the liver and white adipose tissue, while reducing lipolysis and the metabolic activity of brown and beige adipose tissue. Collectively, peripheral serotonin acts as an endocrine factor to promote the efficient storage of energy by upregulating lipid anabolism. Pharmacological inhibition of serotonin synthesis or signaling in key metabolic tissues are potential drug targets for obesity, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD).


2021 ◽  
Vol 22 (16) ◽  
pp. 8503
Author(s):  
Negar Mir ◽  
Shannon A. Chin ◽  
Michael C. Riddell ◽  
Jacqueline L. Beaudry

Glucocorticoids (GCs) are hormones that aid the body under stress by regulating glucose and free fatty acids. GCs maintain energy homeostasis in multiple tissues, including those in the liver and skeletal muscle, white adipose tissue (WAT), and brown adipose tissue (BAT). WAT stores energy as triglycerides, while BAT uses fatty acids for heat generation. The multiple genomic and non-genomic pathways in GC signaling vary with exposure duration, location (adipose tissue depot), and species. Genomic effects occur directly through the cytosolic GC receptor (GR), regulating the expression of proteins related to lipid metabolism, such as ATGL and HSL. Non-genomic effects act through mechanisms often independent of the cytosolic GR and happen shortly after GC exposure. Studying the effects of GCs on adipose tissue breakdown and generation (lipolysis and adipogenesis) leads to insights for treatment of adipose-related diseases, such as obesity, coronary disease, and cancer, but has led to controversy among researchers, largely due to the complexity of the process. This paper reviews the recent literature on the genomic and non-genomic effects of GCs on WAT and BAT lipolysis and proposes research to address the many gaps in knowledge related to GC activity and its effects on disease.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haiyan Zhou ◽  
Xinyi Peng ◽  
Jie Hu ◽  
Liwen Wang ◽  
Hairong Luo ◽  
...  

AbstractAdipose tissue-resident T cells have been recognized as a critical regulator of thermogenesis and energy expenditure, yet the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding greatly suppresses the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L), a mitochondria-localized chaperone protein, in adipose-resident T cells, which correlates with reduced T cell mitochondrial function. T cell-specific knockout of DsbA-L enhances diet-induced thermogenesis in brown adipose tissue (BAT) and protects mice from HFD-induced obesity, hepatosteatosis, and insulin resistance. Mechanistically, DsbA-L deficiency in T cells reduces IFN-γ production and activates protein kinase A by reducing phosphodiesterase-4D expression, leading to increased BAT thermogenesis. Taken together, our study uncovers a mechanism by which T cells communicate with brown adipocytes to regulate BAT thermogenesis and whole-body energy homeostasis. Our findings highlight a therapeutic potential of targeting T cells for the treatment of over nutrition-induced obesity and its associated metabolic diseases.


2021 ◽  
Vol 22 (11) ◽  
pp. 5560
Author(s):  
Alejandro Álvarez-Artime ◽  
Belén García-Soler ◽  
Rosa María Sainz ◽  
Juan Carlos Mayo

In addition to its well-known role as an energy repository, adipose tissue is one of the largest endocrine organs in the organism due to its ability to synthesize and release different bioactive molecules. Two main types of adipose tissue have been described, namely white adipose tissue (WAT) with a classical energy storage function, and brown adipose tissue (BAT) with thermogenic activity. The prostate, an exocrine gland present in the reproductive system of most mammals, is surrounded by periprostatic adipose tissue (PPAT) that contributes to maintaining glandular homeostasis in conjunction with other cell types of the microenvironment. In pathological conditions such as the development and progression of prostate cancer, adipose tissue plays a key role through paracrine and endocrine signaling. In this context, the role of WAT has been thoroughly studied. However, the influence of BAT on prostate tumor development and progression is unclear and has received much less attention. This review tries to bring an update on the role of different factors released by WAT which may participate in the initiation, progression and metastasis, as well as to compile the available information on BAT to discuss and open a new field of knowledge about the possible protective role of BAT in prostate cancer.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Peng Zhou ◽  
Maricela Robles-Murguia ◽  
Deepa Mathew ◽  
Giles E. Duffield

Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated thatId2null mice have sex-specific elevated glucose uptake in brown adipose tissue (BAT). Here we further explored the role ofId2in the regulation of core body temperature over the circadian cycle and the impact ofId2deficiency on genes involved in insulin signaling and adipogenesis in BAT. We discovered a reduced core body temperature inId2−/− mice. Moreover, inId2−/− BAT, 30 genes includingIrs1,PPARs, andPGC-1s were identified as differentially expressed in a sex-specific pattern. These data provide valuable insights into the impact ofId2deficiency on energy homeostasis of mice in a sex-specific manner.


Author(s):  
Eric A. Wilson ◽  
Hui Sun ◽  
Zhenzhong Cui ◽  
Marshal T. Jahnke ◽  
Mritunjay Pandey ◽  
...  

The G protein subunits Gqα and G11α (Gq/11α) couple receptors to phospholipase C, leading to increased intracellular calcium. In this study we investigated the consequences of Gq/11α deficiency in the dorsomedial hypothalamus (DMH), a critical site for the control of energy homeostasis. Mice with DMH-specific deletion of Gq/11α (DMHGq/11KO) were generated by stereotaxic injection of AAV-Cre-GFP into the DMH of Gqαflox/flox:G11α-/- mice. Compared to control mice that received DMH injection of AAV-GFP, DMHGq/11KO mice developed obesity associated with reduced energy expenditure without significant changes in food intake or physical activity. DMHGq/11KO mice showed no defects in the ability of the melanocortin agonist melanotan II to acutely stimulate energy expenditure or to inhibit food intake. At room temperature (22oC) DMHGq/11KO mice showed reduced sympathetic nervous system activity in brown adipose tissue (BAT) and heart, accompanied with decreased basal BAT Ucp1 gene expression and lower heart rates. These mice were cold intolerant when acutely exposed to cold (6oC for 5 hours) and had decreased cold-stimulated BAT Ucp1 gene expression. DMHGq/11KO mice also failed to adapt to gradually declining ambient temperatures and to develop adipocyte browning in inguinal white adipose tissue although their BAT Ucp1 was proportionally stimulated. Consistent with impaired cold-induced thermogenesis, the onset of obesity in DMHGq/11KO mice was significantly delayed when housed under thermoneutral conditions (30ºC). Thus, our results show that Gqα and G11α in the DMH are required for the control of energy homeostasis by stimulating energy expenditure and thermoregulation.


2019 ◽  
Vol 8 (6) ◽  
pp. 854 ◽  
Author(s):  
Min-Woo Lee ◽  
Mihye Lee ◽  
Kyoung-Jin Oh

Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM). It is closely related to metabolic disturbances in the adipose tissue that primarily functions as a fat reservoir. For this reason, adipose tissue is considered as the primary site for initiation and aggravation of obesity and T2DM. As a key endocrine organ, the adipose tissue communicates with other organs, such as the brain, liver, muscle, and pancreas, for the maintenance of energy homeostasis. Two different types of adipose tissues—the white adipose tissue (WAT) and brown adipose tissue (BAT)—secrete bioactive peptides and proteins, known as “adipokines” and “batokines,” respectively. Some of them have beneficial anti-inflammatory effects, while others have harmful inflammatory effects. Recently, “exosomal microRNAs (miRNAs)” were identified as novel adipokines, as adipose tissue-derived exosomal miRNAs can affect other organs. In the present review, we discuss the role of adipose-derived secretory factors—adipokines, batokines, and exosomal miRNA—in obesity and T2DM. It will provide new insights into the pathophysiological mechanisms involved in disturbances of adipose-derived factors and will support the development of adipose-derived factors as potential therapeutic targets for obesity and T2DM.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1494
Author(s):  
Garam Yang ◽  
Eunjeong Hong ◽  
Sejong Oh ◽  
Eungseok Kim

In this study, the role of non-viable Lactobacillus johnsonii JNU3402 (NV-LJ3402) in diet-induced obesity was investigated in mice fed a high-fat diet (HFD). To determine whether NV-LJ3402 exhibits a protective effect against diet-induced obesity, 7-week-old male C57BL/6J mice were fed a normal diet, an HFD, or an HFD with NV-LJ3402 for 14 weeks. NV-LJ3402 administration was associated with a significant reduction in body weight gain and in liver, epididymal, and inguinal white adipose tissue (WAT) and brown adipose tissue weight in HFD-fed mice. Concomitantly, NV-LJ3402 administration to HFD-fed mice also decreased the triglyceride levels in the plasma and metabolic tissues and slightly improved insulin resistance. Furthermore, NV-LJ3402 enhanced gene programming for energy dissipation in the WATs of HFD-fed mice as well as in 3T3-L1 adipocytes with increased peroxisome proliferator-activated receptor-γ (PPARγ) transcriptional activity, suggesting that the PPARγ pathway plays a key role in mediating the anti-obesity effect of NV-LJ3402 in HFD-fed mice. Furthermore, NV-LJ3402 administration in HFD-fed mice enhanced mitochondrial levels and function in WATs and also increased the body temperature upon cold exposure. Together, these results suggest that NV-LJ3402 could be safely used to develop dairy products that ameliorate diet-induced obesity and hyperlipidemia.


Sign in / Sign up

Export Citation Format

Share Document