scholarly journals Genome-Wide Analysis of the Role of NAC Family in Flower Development and Abiotic Stress Responses in Cleistogenes songorica

Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 927
Author(s):  
Xifang Zong ◽  
Qi Yan ◽  
Fan Wu ◽  
Qian Ma ◽  
Jiyu Zhang

Plant-specific NAC (NAM, ATAF, CUC) transcription factor (TF) family plays important roles in biological processes such as plant growth and response to stress. Nevertheless, no information is known about NAC TFs in Cleistogenes songorica, a prominent xerophyte desert grass in northwestern China. In this study, 162 NAC genes were found from the Cleistogenes songorica genome, among which 156 C. songoricaNAC (CsNAC) genes (96.3%) were mapped onto 20 chromosomes. The phylogenetic tree constructed by CsNAC and rice NAC TFs can be separated into 14 subfamilies. Syntenic and Ka/Ks analyses showed that CsNACs were primarily expanded by genomewide replication events, and purifying selection was the primary force driving the evolution of CsNAC family genes. The CsNAC gene expression profiles showed that 36 CsNAC genes showed differential expression between cleistogamous (CL) and chasmogamous (CH) flowers. One hundred and two CsNAC genes showed differential expression under heat, cold, drought, salt and ABA treatment. Twenty-three CsNAC genes were commonly differentially expressed both under stress responses and during dimorphic floret development. Gene Ontology (GO) annotation, coexpression network and qRT-PCR tests revealed that these CsNAC genes may simultaneously regulate dimorphic floret development and the response to stress. Our results may help to characterize the NAC transcription factors in C. songorica and provide new insights into the functional research and application of the NAC family in crop improvement, especially in dimorphic floret plants.

2021 ◽  
Vol 22 (12) ◽  
pp. 6556
Author(s):  
Junjun Huang ◽  
Xiaoyu Li ◽  
Xin Chen ◽  
Yaru Guo ◽  
Weihong Liang ◽  
...  

ATP-binding cassette (ABC) transporter proteins are a gene super-family in plants and play vital roles in growth, development, and response to abiotic and biotic stresses. The ABC transporters have been identified in crop plants such as rice and buckwheat, but little is known about them in soybean. Soybean is an important oil crop and is one of the five major crops in the world. In this study, 255 ABC genes that putatively encode ABC transporters were identified from soybean through bioinformatics and then categorized into eight subfamilies, including 7 ABCAs, 52 ABCBs, 48 ABCCs, 5 ABCDs, 1 ABCEs, 10 ABCFs, 111 ABCGs, and 21 ABCIs. Their phylogenetic relationships, gene structure, and gene expression profiles were characterized. Segmental duplication was the main reason for the expansion of the GmABC genes. Ka/Ks analysis suggested that intense purifying selection was accompanied by the evolution of GmABC genes. The genome-wide collinearity of soybean with other species showed that GmABCs were relatively conserved and that collinear ABCs between species may have originated from the same ancestor. Gene expression analysis of GmABCs revealed the distinct expression pattern in different tissues and diverse developmental stages. The candidate genes GmABCB23, GmABCB25, GmABCB48, GmABCB52, GmABCI1, GmABCI5, and GmABCI13 were responsive to Al toxicity. This work on the GmABC gene family provides useful information for future studies on ABC transporters in soybean and potential targets for the cultivation of new germplasm resources of aluminum-tolerant soybean.


2020 ◽  
Vol 318 (3) ◽  
pp. G419-G427 ◽  
Author(s):  
Tatsuhide Nabeshima ◽  
Shin Hamada ◽  
Keiko Taguchi ◽  
Yu Tanaka ◽  
Ryotaro Matsumoto ◽  
...  

The activation of the Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) pathway contributes to cancer progression in addition to oxidative stress responses. Loss-of-function Keap1 mutations were reported to activate Nrf2, leading to cancer progression. We examined the effects of Keap1 deletion in a cholangiocarcinoma mouse model using a mutant K-ras/ p53 mouse. Introduction of the Keap1 deletion into liver-specific mutant K-ras/ p53 expression resulted in the formation of invasive cholangiocarcinoma. Comprehensive analyses of the gene expression profiles identified broad upregulation of Nrf2-target genes such as Nqo1 and Gstm1 in the Keap1-deleted mutant K-ras/ p53 expressing livers, accompanied by upregulation of cholangiocyte-related genes. Among these genes, the transcriptional factor Sox9 was highly expressed in the dysplastic bile duct. The Keap-Nrf2-Sox9 axis might serve as a novel therapeutic target for cholangiocarcinoma. NEW & NOTEWORTHY The Keap1-Nrf2 system has a wide variety of effects in addition to the oxidative stress response in cancer cells. Addition of the liver-specific Keap1 deletion to mice harboring mutant K-ras and p53 accelerated cholangiocarcinoma formation, together with the hallmarks of Nrf2 activation. This process involved the expansion of Sox9-positive cells, indicating increased differentiation toward the cholangiocyte phenotype.


2020 ◽  
Vol 21 (5) ◽  
pp. 1879 ◽  
Author(s):  
Shanshan He ◽  
Gaopeng Yuan ◽  
Shuxun Bian ◽  
Xiaolei Han ◽  
Kai Liu ◽  
...  

Major latex proteins (MLPs) play critical roles in plants defense and stress responses. However, the roles of MLPs from apple (Malus × domestica) have not been clearly identified. In this study, we focused on the biological role of MdMLP423, which had been previously characterized as a potential pathogenesis-related gene. Phylogenetic analysis and conserved domain analysis indicated that MdMLP423 is a protein with a ‘Gly-rich loop’ (GXGGXG) domain belonging to the Bet v_1 subfamily. Gene expression profiles showed that MdMLP423 is mainly expressed in flowers. In addition, the expression of MdMLP423 was significantly inhibited by Botryosphaeria berengeriana f. sp. piricola (BB) and Alternaria alternata apple pathotype (AAAP) infections. Apple calli overexpressing MdMLP423 had lower expression of resistance-related genes, and were more sensitive to infection with BB and AAAP compared with non-transgenic calli. RNA-seq analysis of MdMLP423-overexpressing calli and non-transgenic calli indicated that MdMLP423 regulated the expression of a number of differentially expressed genes (DEGs) and transcription factors, including genes involved in phytohormone signaling pathways, cell wall reinforcement, and genes encoding the defense-related proteins, AP2-EREBP, WRKY, MYB, NAC, Zinc finger protein, and ABI3. Taken together, our results demonstrate that MdMLP423 negatively regulates apple resistance to BB and AAAP infections by inhibiting the expression of defense- and stress-related genes and transcription factors.


2019 ◽  
Vol 20 (23) ◽  
pp. 6098 ◽  
Author(s):  
Amarinder Singh Thind ◽  
Kumar Parijat Tripathi ◽  
Mario Rosario Guarracino

The comparison of high throughput gene expression datasets obtained from different experimental conditions is a challenging task. It provides an opportunity to explore the cellular response to various biological events such as disease, environmental conditions, and drugs. There is a need for tools that allow the integration and analysis of such data. We developed the “RankerGUI pipeline”, a user-friendly web application for the biological community. It allows users to use various rank based statistical approaches for the comparison of full differential gene expression profiles between the same or different biological states obtained from different sources. The pipeline modules are an integration of various open-source packages, a few of which are modified for extended functionality. The main modules include rank rank hypergeometric overlap, enriched rank rank hypergeometric overlap and distance calculations. Additionally, preprocessing steps such as merging differential expression profiles of multiple independent studies can be added before running the main modules. Output plots show the strength, pattern, and trends among complete differential expression profiles. In this paper, we describe the various modules and functionalities of the developed pipeline. We also present a case study that demonstrates how the pipeline can be used for the comparison of differential expression profiles obtained from multiple platforms’ data of the Gene Expression Omnibus. Using these comparisons, we investigate gene expression patterns in kidney and lung cancers.


2001 ◽  
Vol 5 (4) ◽  
pp. 161-170 ◽  
Author(s):  
DAVID GERHOLD ◽  
MEIQING LU ◽  
JIAN XU ◽  
CHRISTOPHER AUSTIN ◽  
C. THOMAS CASKEY ◽  
...  

Oligonucleotide DNA microarrays were investigated for utility in measuring global expression profiles of drug metabolism genes. This study was performed to investigate the feasibility of using microarray technology to minimize the long, expensive process of testing drug candidates for safety in animals. In an evaluation of hybridization specificity, microarray technology from Affymetrix distinguished genes up to a threshold of ∼90% DNA identity. Oligonucleotides representing human cytochrome P-450 gene CYP3A5 showed heterologous hybridization to CYP3A4 and CYP3A7 RNAs. These genes could be clearly distinguished by selecting a subset of oligonucleotides that hybridized selectively to CYP3A5. Further validation of the technology was performed by measuring gene expression profiles in livers of rats treated with vehicle, 3-methylcholanthrene (3MC), phenobarbital, dexamethasone, or clofibrate and by confirming data for six genes using quantitative RT-PCR. Responses of drug metabolism genes, including CYPs, epoxide hydrolases ( EHs), UDP-glucuronosyl transferases ( UGTs), glutathione sulfotransferases ( GSTs), sulfotransferases ( STs), drug transporter genes, and peroxisomal genes, to these well-studied compounds agreed well with, and extended, published observations. Additional gene regulatory responses were noted that characterize metabolic effects or stress responses to these compounds. Thus microarray technology can provide a facile overview of gene expression responses relevant to drug metabolism and toxicology.


2007 ◽  
Vol 27 (10) ◽  
pp. 3817-3827 ◽  
Author(s):  
Michelle C. Mendoza ◽  
Ezgi O. Booth ◽  
Gad Shaulsky ◽  
Richard A. Firtel

ABSTRACT The MEK and extracellular signal-regulated kinase/mitogen-activated protein kinase proteins are established regulators of multicellular development and cell movement. By combining traditional genetic and biochemical assays with a statistical analysis of global gene expression profiles, we discerned a genetic interaction between Dictyostelium discoideum mek1, smkA (named for its role in the suppression of the mek1 − mutation), and pppC (the protein phosphatase 4 catalytic subunit gene). We found that during development and chemotaxis, both mek1 and smkA regulate pppC function. In other organisms, the protein phosphatase 4 catalytic subunit, PP4C, functions in a complex with the regulatory subunits PP4R2 and PP4R3 to control recovery from DNA damage. Here, we show that catalytically active PP4C is also required for development, chemotaxis, and the expression of numerous genes. The product of smkA (SMEK) functions as the Dictyostelium PP4R3 homolog and positively regulates a subset of PP4C's functions: PP4C-mediated developmental progression, chemotaxis, and the expression of genes specifically involved in cell stress responses and cell movement. We also demonstrate that SMEK does not control the absolute level of PP4C activity and suggest that SMEK regulates PP4C by controlling its localization to the nucleus. These data define a novel genetic pathway in which mek1 functions upstream of pppC-smkA to control multicellular development and chemotaxis.


2020 ◽  
Author(s):  
Md Nafis Ul Alam ◽  
G.M. Nurnabi Azad Jewel ◽  
Tomalika Azim ◽  
Zeba I. Seraj

AbstractFarmland is on the decline and worldwide food security is at risk. Rice is the staple of choice for over half the Earth’s people. To sustain current demands and ascertain a food secure future, substandard farmland affected by abiotic stresses must be utilized. For rapid crop improvement, a broader understanding of polygenic traits like stress tolerance and crop yield is indispensable. To this end, the hidden diversity of resilient and neglected wild varieties must be traced back to their genetic roots. In this study, we separately assayed 15 phenotypes in a panel of 176 diverse accessions predominantly comprised of local landraces from Bangladesh. We compiled high resolution sequence data for these accessions. We collectively studied the ties between the observed phenotypic differences and the examined additive genetic effects underlying these variations. We applied a sophisticated fixed effect model to associate phenotypes with genotypes on a genomic scale. Discovered QTLs were mapped to known genes. Candidate genes were sorted by tissue specific gene expression profiles and protein level consequence of existing polymorphisms. Our explorations yielded 17 QTLs related to various traits in multiple trait classes. 12 identified QTLs were equivalent to findings from previous studies. Integrative analysis assumes novel functionality for 21 candidate genes on multiple evidence levels. These findings will usher novel avenues for the bioengineering of high yielding crops of the future fortified with genetic defenses against abiotic stressors.


2020 ◽  
Author(s):  
Chong Yang ◽  
Juanjuan Li ◽  
Faisal Islam ◽  
Luyang Hu ◽  
Jiansu Wang ◽  
...  

Abstract Background: WRKY transcription factors play important roles in various physiological processes and stress responses in flowering plants. However, the information about WRKY genes in Helianthus annuus L. (common sunflower) is limited. Results: Ninety WRKY (HaWRKY) genes were identified and renamed according to their locations on chromosomes. Further phylogenetic analyses classified them into four main groups including a species-specific WKKY group and HaWRKY genes within same group or subgroup generally showed similar exon-intron structures and motif compositions. The tandem and segmental duplication possibly contributed to the diversity and expansion of HaWRKY gene families. Synteny analyses of sunflower WRKY genes provided deep insight to the evolution of HaWRKY genes. Transcriptomic and qRT-PCR analyses of HaWRKY genes displayed distinct expression patterns in different plant tissues, as well as under various abiotic and biotic stresses. Conclusions: Ninety WRKY (HaWRKY) genes were identified from H. annuus L. and classified into four groups. Structures of HaWRKY proteins and their evolutionary characteristics were also investigated. The characterization of HaWRKY genes and their expression profiles under biotic and abiotic stresses in this study provide a foundation for further functional analyses of these genes. Therefore, these functional genes related to increasing the plant tolerance or improving the crop quality, could be applied for the crop improvement..


Sign in / Sign up

Export Citation Format

Share Document