scholarly journals Comparative Analysis of Carbon, Ecological, and Water Footprints of Polypropylene-Based Composites Filled with Cotton, Jute and Kenaf Fibers

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3541
Author(s):  
Jerzy Korol ◽  
Aleksander Hejna ◽  
Dorota Burchart-Korol ◽  
Jan Wachowicz

Composites containing natural fibers are considered environmentally friendly materials which is related to the reduced use of fossil fuels and the emission of carbon dioxide compared to petroleum-based polymers. Nevertheless, a complete evaluation of their environmental impact requires a broader view. This paper presents a carbon, ecological, and water footprints assessment of polypropylene-based composites filled with cotton, jute, and kenaf fibers based on a standardized European pallet (EUR-pallet) case study. Obtained results were compared with unmodified polypropylene and composite with glass fibers. Incorporation of 30 wt% of cotton, jute, and kenaf fibers into a polypropylene matrix reduced its carbon footprint by 3%, 18%, and 18%, respectively. Regarding the ecological footprint, an 8.2% and 9.4% reduction for jute and kenaf fibers were noted, while for cotton fibers, its value increased by 52%. For these footprints, the use of jute and kenaf fibers was more beneficial than glass fibers. Nevertheless, the application of natural fibers caused a 286%, 758%, and 891% drastic increase of water footprint of the final product, which was mainly affected by cultivation and irrigation of crops. Therefore, in a holistic view, the incorporation of natural fibers into the polypropylene matrix definitely cannot be impartially considered as an environmentally friendly solution.

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1791 ◽  
Author(s):  
Jerzy Korol ◽  
Aleksander Hejna ◽  
Dorota Burchart-Korol ◽  
Błażej Chmielnicki ◽  
Klaudiusz Wypiór

This paper presents a water footprint assessment of polymers, polymer blends, composites, and biocomposites based on a standardized EUR-pallet case study. The water footprint analysis is based on life cycle assessment (LCA). The study investigates six variants of EUR-pallet production depending on the materials used. The system boundary included the production of each material and the injection molding to obtain a standardized EUR-pallet of complex properties. This paper shows the results of a water footprint of six composition variants of analyzed EUR-pallet, produced from biocomposites and composites based on polypropylene, poly(lactic acid), cotton fibers, jute fibers, kenaf fibers, and glass fibers. Additionally, a water footprint of applied raw materials was evaluated. The highest water footprint was observed for cotton fibers as a reinforcement of the analyzed biocomposites and composites. The water footprint of cotton fibers is caused by the irrigation of cotton crops. The results demonstrate that the standard EUR-pallet produced from polypropylene with glass fibers as reinforcement can contribute to the lowest water footprint.


2021 ◽  
Vol 13 (12) ◽  
pp. 6797
Author(s):  
Peter Mako ◽  
Andrej Dávid ◽  
Patrik Böhm ◽  
Sorin Savu

Sustainability of transport systems is a key issue in transport. The main question is whether high levels of road and railway transport in areas along navigable waterways is an effective solution for this issue. The Danube waterway is an example. Generally, it is not observed that traffic performance is not as high as on the Rhine. This paper deals with the revelation of the available capacity of this waterway based on approximation functions and their comparison with real transport performances. This methodology points to the level of use of waterways. The connection of this model with the production of fossil fuels creates a basis for a case study. The case study in this paper offers a possibility for a sustainable and environmentally friendly transition from road transport to inland water transport on the example of specific transport routes. The main contribution of this paper is a presentation of the application of sustainable models of use transport capacity to increase the share of environmentally friendly and sustainable inland water transport. The conclusion based on the case study and materials is that the available capacity of inland water transport on the Danube could support the transition of traffic performances to sustainable and environmentally friendly means of transport.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2844
Author(s):  
Winnie Gerbens-Leenes ◽  
Santiago Vaca-Jiménez ◽  
Mesfin Mekonnen

This paper gives an overview of the contribution of water footprint (WF) studies on water for energy relationships. It first explains why water is needed for energy, gives an overview of important water energy studies until 2009, shows the contribution of Hoekstra’s work on WF of energy generation, and indicates how this contribution has supported new research. Finally, it provides knowledge gaps that are relevant for future studies. Energy source categories are: 1. biofuels from sugar, starch and oil crops; 2. cellulosic feedstocks; 3. biofuels from algae; 4. firewood; 5. hydropower and 6. various sources of energy including electricity, heat and transport fuels. Especially category 1, 3, 4, 5 and to a lesser extent 2 have relatively large WFs. This is because the energy source derives from agriculture or forestry, which has a large water use (1,2,4), or has large water use due to evaporation from open water surfaces (3,5). WFs for these categories can be calculated using the WF tool. Category 6 includes fossil fuels and renewables, such as photovoltaics and wind energy and has relatively small WFs. However, information needs to be derived from industry.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Huang Huanhai

The potential crisis of energy and the deterioration of ecological environment make the world's cumbersomedevelopment of renewable energy including new energy, including solar energy. Traditional energy in the coal, oil andnatural gas are evolved from ancient fossils, it is collectively referred to as fossil fuels. As the world's energy needscontinue to increase, fossil fuels will also be depleted, it is necessary to fi nd a new energy to replace the traditionalenergy. Solar energy is a clean renewable energy with mineral energy incomparable superiority. Modern society shouldbe a conservation-oriented society, and social life should also be a life-saving energy. At the same time, Premier WenJiabao also proposed on June 30, 2005 and stressed the need to speed up the construction of a conservation-orientedsociety. And solar energy as an inexhaustible new environmentally friendly energy has become the world's energyresearch work in the world an important issue. Is the world in the economic situation to take a simpler, economical,environmentally friendly and reliable building heating and heating energy-saving measures. This paper summarizes thecurrent global energy status, indicating the importance of solar power and prospects. Details of the various solar powergeneration methods and their advantages, and made a comparison of this power generation parameters. At the sametime pointed out that the diffi culties faced by solar power and solutions, as well as China's solar power of the favorableconditions and diffi culties. The future of China's solar energy made a prospect.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Alfan Ekajati Latief ◽  
Nuha Desi Anggraeni ◽  
Dedy Hernady

ABSTRAK Serat alam yang berfungsi sebagai penguat memiliki sifat yang lebih ringan, mudah dibentuk, tahan korosi, harga murah dan memiliki kekuatan yang sama dengan material logam. Serat bahan alami yang memiliki kekuatan tarik, tekan dan impak yang baik diantaranya serat rami dan daun nanas. Untuk matriks Polipropilena high impact (PPHI) yang banyak digunakan dalam industri otomotif.. Pada penelitian ini dipelajari pengaruh fraksi volume serat alami terhadap sifat mekanik komposit PPHI berpenguat serat alami. Komposit PPHI dibuat dengan menggunakan metode Hand Lay Up pada temperatur 2500C dengan fraksi volume serat alami sebesar 10%, dimana serat dibuat digunting halus hingga memiliki ukuran mesh 120/170, 170/200 dan dibawah 200 mesh, Kekuatan tarik komposit diukur dengan mengacu pada standar ASTM 3039, kekuatan tekan diukur mengacu pada ASTM D 695. Harga Impak dari komposit diukur dengan mengacu pada ASTM D 6110-04. Pada penelitian ini dapat disimpulkan, fraksi volume 10 % serat alami yang baik ketika dicampur dengan matriks polipropilena high impact adalah serat nanas dengan meshing 170/200 dapat meningkatkan kekuatan tarik PPHI sebesar 40 % dan meningkatkan harga impak PPHI sebesar 50,8 % jika dilihat penelitan sebelumnya yakni menggunakan serat rami dibawah mesh 1200 dengan matriks PPHI. Kata Kunci: Rami, Daun Nanas, Polipropilena High Impact, Hand Lay Up. ABSTRACT Natural fibers that function as reinforcement have lighter properties, are easily formed, are corrosion resistant, are cheap and have the same strength as metal materials. Natural fiber which has good tensile, compressive and impact strength including Ramie and pineapple leaves. For high impact polypropylene matrix (PPHI) which is widely used in the automotive industry. In this study the effect of volume fraction of natural fibers on the mechanical properties of PPHI composites with natural fiber reinforced properties was studied. PPHI composites are made using the Hand Lay Up method at a temperature of 2500C with a volume fraction of natural fibers of 10%, where fibers are made finely shaved to have a mesh size of 120/170, 170/200 and below 200 mesh, the tensile strength of the composite is measured by reference to the standard ASTM 3039, compressive strength measured refers to ASTM D 695. The impact price of the composite is measured with reference to ASTM D 6110-04. In this study it can be concluded, a good volume fraction of 10% natural fiber when mixed with high impact polypropylene matrix is pineapple fiber with meshing 170/200 can increase the tensile strength of PPHI by 40% and increase the impact price of PPHI by 50.8% if seen by research previously that used hemp fiber under mesh 1200 with PPHI matrix. Keywords: Ramie Pineapple, High Impact Polypropylene, Hand Lay Up.


2013 ◽  
Vol 5 (1) ◽  
pp. 70-80 ◽  
Author(s):  
María Eugenia Haro ◽  
Ines Navarro ◽  
Ralph Thompson ◽  
Blanca Jimenez

Energy policies are taken throughout the world to reduce fossil fuel emissions from transportation sources. Agriculturally based biofuels are currently the only alternatives to liquid fossil fuels. However, as biofuel production spreads, so too do its cascading impacts on environment and food security. This paper analyzes the impact of Mexican ethanol-sugarcane policy on water resources. The water footprint of sugarcane (WFsc) was quantified for an agricultural region in Jalisco, Mexico, and used to estimate anthropologic water demand and stress index. This analysis was performed using historical climate data, and for projected changes under scenarios A2 and B1, using ECHAM and GFDL models. The average historical water footprint of sugarcane was estimated as 104.9 m3/ton, total average water demand as 152.3 Mm3/year and a historical water scarcity index as 59%. Under climate change, the footprint might increase 2% by 2020 and 3–4% by 2050. The available water is predicted to fall 4–7% by 2020, and 6–8% by 2050, with negative effects on water stress. Due to the strong influence of local factors on water footprint and stress, additional research is needed for all Mexican sugarcane regions, in order to evaluate the feasibility of the policy regarding the use of ethanol for transportation.


2014 ◽  
Vol 69 (6) ◽  
Author(s):  
A. Mataram

Polypropylene (PP) including a type of plastic which ranks second on the most number of types of plastic waste after the type of High Density Polyethylene (HDPE). Glass fibers have superior mechanical properties of natural fibers. Because it has good mechanical properties, glass fibers currently plays an important role in the use of composite reinforcement. Mechanical properties of glass fiber owned and PP waste in environmental conditions that more conditions, it can be utilized as a composite reinforcement and matrix materials. This research was conducted by of injection molding method. The comparison between the volume fraction of the glass fiber matrix of type PP plastic waste with variation 0% fibers 100% matrixs, 10% fibers 90% matrixs, 20% fibers 80% matrixs, 30% fibers 70% matrixs, 40% fibers 60% matrixs, and 50 % fibers 50% matrixs. The optimum conditions obtained in this study was the comparison of variation occurs in 50% fibers volume fractions of 50% matrixs were: tensile stress was 24.30 N/mm2, tensile strain was 13.60%.


2019 ◽  
Vol 9 (9) ◽  
pp. 1793
Author(s):  
Jae-Oh Han ◽  
Jae-Won Shin ◽  
Jae-Chang Kim ◽  
Se-Hoon Oh

Mega trends in the global automotive industry are environmentally friendly. As laws and regulations tighten at the government level, the automobile industry is striving to develop a drive system that can operate without using fossil fuels, instead of developing an internal combustion engine using fossil fuels. Environmentally-friendly energy is attracting attention as an alternative to solve the problems of air pollution and fossil fuel depletion. Electricity is attracting the most attention among environmentally-friendly alternative fuels. In addition, research on the development of a high-efficiency and high-reliability advanced electric automobile drive system are actively being carried out. In this study, a two-speed transmission for electric vehicles is developed using environmentally-friendly fuel. The 1st and the 2nd planetary gear modules were integrated, the ring gear and the carrier gear were shared, and the dual disc brake was used to design a mechanism for fixing each sun and shifting gear. Such a structure can improve shift energy efficiency compared to that of conventional transmissions. It was judged that the structure was suitable for an electric car using a limited power supply. Each gear was designed by calculating bending strength and surface durability.


2019 ◽  
Vol 40 (8) ◽  
pp. 3351-3360 ◽  
Author(s):  
Filipe V. Ferreira ◽  
Ivanei F. Pinheiro ◽  
Marcos Mariano ◽  
Luciana S. Cividanes ◽  
João C.M. Costa ◽  
...  

2014 ◽  
Vol 984-985 ◽  
pp. 285-290
Author(s):  
K. Hari Ram ◽  
R. Edwin Raj

Polymer composites reinforced with natural fibers have been developed in recent years, showing significant potential for various engineering applications due to their inherent sustainability, low cost, light weight and comparable mechanical strength. Sisal is a natural fiber extracted from leaves of Agave Sisalana plants and substituted for natural glass fiber. Six different combinations of specimens were prepared with sisal, sisal-glass and glass fibers with epoxy as matrix at two different fiber orientation of 0-90° and ±45°. Mechanical characterization such as tensile, flexural and impact testing were done to analyze their mechanical strength. It is found that the hybrid composite sisal-glass-epoxy has better and comparable mechanical properties with conventional glass-epoxy composite and thus provides a viable, sustainable alternate polymer composite.


Sign in / Sign up

Export Citation Format

Share Document