scholarly journals Fluorescent Materials for Monitoring Mitochondrial Biology

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4180
Author(s):  
Yeojeong Chu ◽  
Jisoo Park ◽  
Eunha Kim ◽  
Sanghee Lee

Mitochondria play important roles in diverse cellular processes such as energy production, cellular metabolism, and apoptosis to promote cell death. To investigate mitochondria-associated biological processes such as structure, dynamics, morphological change, metabolism, and mitophagy, there exists a continuous demand for visualizing and monitoring techniques elucidating mitochondrial biology and disease-relevancy. Due to the advantages of high sensitivity and practicality, fluorescence phenomena have been most widely used as scientific techniques for the visualization of biological phenomena and systems. In this review, we briefly overview the different types of fluorescent materials such as chemical probes, peptide- or protein-based probes, and nanomaterials for monitoring mitochondrial biology.

Author(s):  
Kazumichi Ogura ◽  
Michael M. Kersker

Backscattered electron (BE) images of GaAs/AlGaAs super lattice structures were observed with an ultra high resolution (UHR) SEM JSM-890 with an ultra high sensitivity BE detector. Three different types of super lattice structures of GaAs/AlGaAs were examined. Each GaAs/AlGaAs wafer was cleaved by a razor after it was heated for approximately 1 minute and its crosssectional plane was observed.First, a multi-layer structure of GaAs (100nm)/AlGaAs (lOOnm) where A1 content was successively changed from 0.4 to 0.03 was observed. Figures 1 (a) and (b) are BE images taken at an accelerating voltage of 15kV with an electron beam current of 20pA. Figure 1 (c) is a sketch of this multi-layer structure corresponding to the BE images. The various layers are clearly observed. The differences in A1 content between A1 0.35 Ga 0.65 As, A1 0.4 Ga 0.6 As, and A1 0.31 Ga 0.69 As were clearly observed in the contrast of the BE image.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2118
Author(s):  
Yusuke Hosoya ◽  
Junko Ohkanda

Intrinsically disordered proteins (IDPs) are critical players in the dynamic control of diverse cellular processes, and provide potential new drug targets because their dysregulation is closely related to many diseases. This review focuses on several medicinal studies that have identified low-molecular-weight inhibitors of IDPs. In addition, clinically relevant liquid–liquid phase separations—which critically involve both intermolecular interactions between IDPs and their posttranslational modification—are analyzed to understand the potential of IDPs as new drug targets.


2020 ◽  
Vol 39 (1) ◽  
pp. 209-221
Author(s):  
Jiafeng Wan ◽  
Xiaoyuan Zhang ◽  
Kai Zhang ◽  
Zhiqiang Su

Abstract In recent years, nanomaterials have attracted lots of attention from researchers due to their unique properties. Nanometer fluorescent materials, such as organic dyes, semiconductor quantum dots (QDs), metal nano-clusters (MNCs), carbon dots (CDs), etc., are widely used in biological imaging due to their high sensitivity, short response time, and excellent accuracy. Nanometer fluorescent probes can not only perform in vitro imaging of organisms but also achieve in vivo imaging. This provides medical staff with great convenience in cancer treatment. Combined with contemporary medical methods, faster and more effective treatment of cancer is achievable. This article explains the response mechanism of three-nanometer fluorescent probes: the principle of induced electron transfer (PET), the principle of fluorescence resonance energy transfer (FRET), and the principle of intramolecular charge transfer (ICT), showing the semiconductor QDs, precious MNCs, and CDs. The excellent performance of the three kinds of nano fluorescent materials in biological imaging is highlighted, and the application of these three kinds of nano fluorescent probes in targeted biological imaging is also introduced. Nanometer fluorescent materials will show their significance in the field of biomedicine.


Author(s):  
Jonghoon Kim ◽  
Nohyun Lee ◽  
Taeghwan Hyeon

Molecular imaging enables us to non-invasively visualize cellular functions and biological processes in living subjects, allowing accurate diagnosis of diseases at early stages. For successful molecular imaging, a suitable contrast agent with high sensitivity is required. To date, various nanoparticles have been developed as contrast agents for medical imaging modalities. In comparison with conventional probes, nanoparticles offer several advantages, including controllable physical properties, facile surface modification and long circulation time. In addition, they can be integrated with various combinations for multimodal imaging and therapy. In this opinion piece, we highlight recent advances and future perspectives of nanomaterials for molecular imaging. This article is part of the themed issue ‘Challenges for chemistry in molecular imaging’.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 921
Author(s):  
Ekaterina Mikhailovna Stasevich ◽  
Matvey Mikhailovich Murashko ◽  
Lyudmila Sergeevna Zinevich ◽  
Denis Eriksonovich Demin ◽  
Anton Markovich Schwartz

Alterations in the expression level of the MYC gene are often found in the cells of various malignant tumors. Overexpressed MYC has been shown to stimulate the main processes of oncogenesis: uncontrolled growth, unlimited cell divisions, avoidance of apoptosis and immune response, changes in cellular metabolism, genomic instability, metastasis, and angiogenesis. Thus, controlling the expression of MYC is considered as an approach for targeted cancer treatment. Since c-Myc is also a crucial regulator of many cellular processes in healthy cells, it is necessary to find ways for selective regulation of MYC expression in tumor cells. Many recent studies have demonstrated that non-coding RNAs play an important role in the regulation of the transcription and translation of this gene and some RNAs directly interact with the c-Myc protein, affecting its stability. In this review, we summarize current data on the regulation of MYC by various non-coding RNAs that can potentially be targeted in specific tumor types.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 229 ◽  
Author(s):  
Zhengqiu Zhou ◽  
Grant Austin ◽  
Lyndsay Young ◽  
Lance Johnson ◽  
Ramon Sun

Mitochondria are bilayer sub-cellular organelles that are an integral part of normal cellular physiology. They are responsible for producing the majority of a cell’s ATP, thus supplying energy for a variety of key cellular processes, especially in the brain. Although energy production is a key aspect of mitochondrial metabolism, its role extends far beyond energy production to cell signaling and epigenetic regulation–functions that contribute to cellular proliferation, differentiation, apoptosis, migration, and autophagy. Recent research on neurological disorders suggest a major metabolic component in disease pathophysiology, and mitochondria have been shown to be in the center of metabolic dysregulation and possibly disease manifestation. This review will discuss the basic functions of mitochondria and how alterations in mitochondrial activity lead to neurological disease progression.


2017 ◽  
Vol 284 (1863) ◽  
pp. 20171619 ◽  
Author(s):  
Richard C. Allen ◽  
Jan Engelstädter ◽  
Sebastian Bonhoeffer ◽  
Bruce A. McDonald ◽  
Alex R. Hall

Resistance spreads rapidly in pathogen or pest populations exposed to biocides, such as fungicides and antibiotics, and in many cases new biocides are in short supply. How can resistance be reversed in order to prolong the effectiveness of available treatments? Some key parameters affecting reversion of resistance are well known, such as the fitness cost of resistance. However, the population biological processes that actually cause resistance to persist or decline remain poorly characterized, and consequently our ability to manage reversion of resistance is limited. Where do susceptible genotypes that replace resistant lineages come from? What is the epidemiological scale of reversion? What information do we need to predict the mechanisms or likelihood of reversion? Here, we define some of the population biological processes that can drive reversion, using examples from a wide range of taxa and biocides. These processes differ primarily in the origin of revertant genotypes, but also in their sensitivity to factors such as coselection and compensatory evolution that can alter the rate of reversion, and the likelihood that resistance will re-emerge upon re-exposure to biocides. We therefore argue that discriminating among different types of reversion allows for better prediction of where resistance is most likely to persist.


2021 ◽  
Author(s):  
Thomas J. Kucharski ◽  
Rufus Hards ◽  
Kristina M. Godek ◽  
Scott A. Gerber ◽  
Duane A. Compton

SummaryKinetochore protein phosphorylation promotes the correction of erroneous microtubule attachments to ensure faithful chromosome segregation during cell division. Determining how phosphorylation executes error correction requires an understanding of whether kinetochore substrates are completely (i.e. all-or-none) or only fractionally phosphorylated. Using quantitative mass spectrometry (MS), we measured phospho-occupancy on the conserved kinetochore protein Hec1 (NDC80) that directly binds microtubules. None of the positions measured exceeded ∼50% phospho-occupancy, and the cumulative phospho-occupancy changed by only ∼20% in response to changes in microtubule attachment status. The narrow dynamic range of phospho-occupancy is maintained by ongoing phosphatase activity. Further, both Cdk1-Cyclin B1 and Aurora kinases phosphorylate Hec1 to enhance error correction in response to different types of microtubule attachment errors. Thus, networks of kinases and phosphatases maintain low inherent phospho-occupancy to promote microtubule attachment to kinetochores while providing for high sensitivity of kinetochore-microtubule attachments to very small changes in phospho-occupancy to ensure high mitotic fidelity.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6728
Author(s):  
Stanislav O. Volchkov ◽  
Anna A. Pasynkova ◽  
Michael S. Derevyanko ◽  
Dmitry A. Bukreev ◽  
Nikita V. Kozlov ◽  
...  

Soft magnetic materials are widely requested in electronic and biomedical applications. Co-based amorphous ribbons are materials which combine high value of the magnetoimpedance effect (MI), high sensitivity with respect to the applied magnetic field, good corrosion stability in aggressive environments, and reasonably low price. Functional properties of ribbon-based sensitive elements can be modified by deposition of additional magnetic and non-ferromagnetic layers with required conductivity. Such layers can play different roles. In the case of magnetic biosensors for magnetic label detection, they can provide the best conditions for self-assembling processes in biological experiments. In this work, magnetic properties and MI effect were studied for the cases of rapidly quenched Co67Fe3Cr3Si15B12 amorphous ribbons and magnetic Fe20Ni80/Co67Fe3Cr3Si15B12/Fe20Ni80 composites obtained by deposition of Fe20Ni80 1 μm thick films onto both sides of the ribbons by magnetron sputtering technique. Their comparative analysis was used for finite element computer simulations of MI responses with different types of magnetic and conductive coatings. The obtained results can be useful for the design of MI sensor development, including MI biosensors for magnetic label detection.


2018 ◽  
Vol 19 (9) ◽  
pp. 2820 ◽  
Author(s):  
Lidia Avalle ◽  
Valeria Poli

The transcription factor signal transducer and activator of transcription (STAT)3 mediates the functions of cytokines, growth factors, and oncogenes under both physiological and pathological conditions. Uncontrolled/constitutive STAT3 activity is often detected in tumors of different types, where its role is mostly that of an oncogene, contributing in multiple ways to tumor transformation, growth, and progression. For this reason, many laboratories and pharmaceutical companies are making efforts to develop specific inhibitors. However, STAT3 has also been shown to act as a tumor suppressor in a number of cases, suggesting that its activity is strongly context-specific. Here, we discuss the bases that can explain the multiple roles of this factor in both physiological and pathological contexts. In particular, we focus on the following four features: (i) the distinct properties of the STAT3α and β isoforms; (ii) the multiple post-translational modifications (phosphorylation on tyrosine or serine, acetylation and methylation on different residues, and oxidation and glutathionylation) that can affect its activities downstream of multiple different signals; (iii) the non-canonical functions in the mitochondria, contributing to the maintenance of energy homeostasis under stress conditions; and (iv) the recently discovered functions in the endoplasmic reticulum, where STAT3 contributes to the regulation of calcium homeostasis, energy production, and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document