scholarly journals Floridean Starch and Floridoside Metabolic Pathways of Neoporphyra haitanensis and Their Regulatory Mechanism under Continuous Darkness

Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 664
Author(s):  
Yahui Yu ◽  
Xuli Jia ◽  
Wenlei Wang ◽  
Yuemei Jin ◽  
Weizhi Liu ◽  
...  

Floridean starch and floridoside are the main storage carbohydrates of red algae. However, their complete metabolic pathways and the origin, function, and regulatory mechanism of their pathway genes have not been fully elucidated. In this study, we identified their metabolic pathway genes and analyzed the changes in related gene expression and metabolite content in Neoporphyra haitanensis under continuous dark conditions. Our results showed that genes from different sources, including eukaryotic hosts, cyanobacteria, and bacteria, were combined to construct floridean starch and floridoside metabolic pathways in N. haitanensis. Moreover, compared with those in the control, under continuous dark conditions, floridean starch biosynthesis genes and some degradation genes were significantly upregulated with no significant change in floridean starch content, whereas floridoside degradation genes were significantly upregulated with a significant decrease in floridoside content. This implies that floridean starch content is maintained but floridoside is consumed in N. haitanensis under dark conditions. This study elucidates the “floridean starch–floridoside” metabolic network and its gene origins in N. haitanensis for the first time.

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2634
Author(s):  
Beatriz Soldevilla ◽  
Angeles López-López ◽  
Alberto Lens-Pardo ◽  
Carlos Carretero-Puche ◽  
Angeles Lopez-Gonzalvez ◽  
...  

Purpose: High-throughput “-omic” technologies have enabled the detailed analysis of metabolic networks in several cancers, but NETs have not been explored to date. We aim to assess the metabolomic profile of NET patients to understand metabolic deregulation in these tumors and identify novel biomarkers with clinical potential. Methods: Plasma samples from 77 NETs and 68 controls were profiled by GC−MS, CE−MS and LC−MS untargeted metabolomics. OPLS-DA was performed to evaluate metabolomic differences. Related pathways were explored using Metaboanalyst 4.0. Finally, ROC and OPLS-DA analyses were performed to select metabolites with biomarker potential. Results: We identified 155 differential compounds between NETs and controls. We have detected an increase of bile acids, sugars, oxidized lipids and oxidized products from arachidonic acid and a decrease of carnitine levels in NETs. MPA/MSEA identified 32 enriched metabolic pathways in NETs related with the TCA cycle and amino acid metabolism. Finally, OPLS-DA and ROC analysis revealed 48 metabolites with diagnostic potential. Conclusions: This study provides, for the first time, a comprehensive metabolic profile of NET patients and identifies a distinctive metabolic signature in plasma of potential clinical use. A reduced set of metabolites of high diagnostic accuracy has been identified. Additionally, new enriched metabolic pathways annotated may open innovative avenues of clinical research.


2022 ◽  
Vol 62 (1) ◽  
pp. 617-639
Author(s):  
Xiaojing Wang ◽  
Qirong Lu ◽  
Jingchao Guo ◽  
Irma Ares ◽  
Marta Martínez ◽  
...  

Glyphosate (GLYP) is a widely used pesticide; it is considered to be a safe herbicide for animals and humans because it targets 5-enolpyruvylshikimate-3-phosphate synthase. However, there has been increasing evidence that GLYP causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. This review provides a comprehensive introduction to the toxicity of GLYP and, for the first time, systematically summarizes the toxicity mechanism of GLYP from the perspective of oxidative stress, including GLYP-mediated oxidative damage, changes in antioxidant status, altered signaling pathways, and the regulation of oxidative stress by exogenous substances. In addition, the metabolism of GLYP is discussed, including metabolites,metabolic pathways, metabolic enzymes, and the toxicity of metabolites. This review provides new ideas for the toxicity mechanism of GLYP and proposes effective strategies for reducing its toxicity.


1991 ◽  
Vol 7 (3) ◽  
pp. 241-247 ◽  
Author(s):  
W.-X. Wu ◽  
J. Brooks ◽  
M. R. Millar ◽  
W. L. Ledger ◽  
P. T. K. Saunders ◽  
...  

ABSTRACT While the fetal pituitary synthesizes and releases prolactin, it is also produced within the utero-placental unit during pregnancy in women and has been localized in the amnion, chorion and decidua. However, it is not clear whether prolactin is synthesized within all these non-fetal pituitary tissues. We have investigated prolactin production and its gene expression using tissue culture, immunocytochemistry and in-situ hybridization techniques. Prolactin was immunolocalized not only in the decidua but also in amnion and trophoblast cells. In contrast, the in-situ hybridization results showed that silver grains, formed by specific hybridization of a prolactin cDNA probe to prolactin mRNA, were confined to decidual cells of early and term pregnancy. The results from tissue cultures correlated well with those of in-situ hybridization, that is that only the decidua made detectable prolactin, while it was undetectable in the culture medium from trophoblast tissue, irrespective of the stage of pregnancy. This study, for the first time, establishes that only decidualized cells are involved in biosynthesis of prolactin; other prolactin-containing cells in the amnion and trophoblast appear to sequester prolactin, possibly via receptors, suggesting that prolactin may play an important paracrine role within the amnion and syncitio- and cytotrophoblast of the utero-placental unit.


2011 ◽  
Vol 38 (1) ◽  
pp. 63 ◽  
Author(s):  
Simona Nardozza ◽  
Ian C. Hallett ◽  
Rosannah McCartney ◽  
Annette C. Richardson ◽  
Elspeth A. MacRae ◽  
...  

The role of anatomical traits in carbohydrate accumulation was investigated in fruit of Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson (kiwifruit) var. deliciosa by comparing high and low dry matter (DM) accumulating genotypes. DM was shown previously to be correlated with starch concentration in these fruit. Volume proportions of the three fruit tissues (outer pericarp, inner pericarp and central core) did not vary significantly between genotypes or contribute to variation in total fruit DM. The outer pericarp of the kiwifruit berry contains both small and large cells: the size of these cells was not correlated with final fruit size. In high DM genotypes, the relative volume of outer pericarp tissue occupied by small cells (50%) was significantly greater than that in low DM genotypes (43%). Small cells have a higher starch concentration than large cells: the larger proportion of small cells in the outer pericarp of fruit from high DM genotypes accounted for approximately +25% of the measured differences in fruit starch concentration between high and low DM genotypes. We conclude that, although anatomical traits contribute to variation in fruit starch concentration between kiwifruit genotypes, differences in starch content per small cell are important and worthy of further investigation. This is the first time anatomical investigations have been used to examine differences in fruit carbohydrate accumulation in kiwifruit.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Jie Liang ◽  
Shujuan Zhang ◽  
Wei Wang ◽  
Yan Xu ◽  
Atikan Kawuli ◽  
...  

Abstract Cervical cancer (CC) is ranked as the fourth most common cancer that occurs in women universally, which normally causes pain in the lower belly. Plenty of studies have stated that the expression of long non-coding RNAs (lncRNAs) is linked to the cellular development of many kinds of cancers. DSCAM-AS1 has been reported to act as an oncogene in other cancer types and the aim of our study was to uncover the function and regulatory mechanism of DSCAM-AS1 in CC. In this research, our findings presented that DSCAM-AS1 expression was up-regulated in CC cells. DSCAM-AS1 led to the development of CC by enhancing cell proliferation, migration and invasion ability. DSCAM-AS1 was verified to combine with miR-877-5p and down-regulate the expression of miR-877-5p. Results also showed that ATXN7L3 was a downstream target gene of miR-877-5p and it was unfavorably modulated by miR-877-5p. Enhanced expression of ATXN7L3 counterbalanced the DSCAM-AS1 knockdown effect on the progression of CC. This was the first time to analyze the underlying regulatory mechanism of the oncogenic DSCAM-AS1. Our findings clarified that DSCAM-AS1 played as an oncogenic lncRNA by targeting miR-877-5p/ATXN7L3 axis to promote CC progression, which may provide insights into the prevention of CC.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1519
Author(s):  
Lorena Ruiz de Larrinaga ◽  
Victor Resco de Dios ◽  
Dmitri Fabrikov ◽  
José Luis Guil-Guerrero ◽  
José María Becerril ◽  
...  

Vegetables, once harvested and stored on supermarket shelves, continue to perform biochemical adjustments due to their modular nature and their ability to retain physiological autonomy. They can live after being harvested. In particular, the content of some essential nutraceuticals, such as carotenoids, can be altered in response to environmental or internal stimuli. Therefore, in the present study, we wondered whether endogenous rhythms continue to operate in commercial vegetables and if so, whether vegetable nutritional quality could be altered by such cycles. Our experimental model consisted of rocket leaves entrained under light/darkness cycles of 12/12 h over 3 days, and then we examined free-run oscillations for 2 days under continuous light or continuous darkness, which led to chlorophyll and carotenoid oscillations in both constant conditions. Given the importance of preserving food quality, the existence of such internal rhythms during continuous conditions may open new research perspective in nutrition science. However, while chromatographic techniques employed to determine pigment composition are accurate, they are also time-consuming and expensive. Here we propose for the first time an alternative method to estimate pigment content and the nutritional quality by the use of non-destructive and in situ optical techniques. These results are promising for nutritional quality assessments.


2004 ◽  
Vol 5 (1) ◽  
pp. 17-38 ◽  
Author(s):  
Avinash R. Shenoy ◽  
K. Sivakumar ◽  
A. Krupa ◽  
N. Srinivasan ◽  
Sandhya S. Visweswariah

Cyclic nucleotides are well-known second messengers involved in the regulation of important metabolic pathways or virulence factors. There are six different classes of nucleotide cyclases that can accomplish the task of generating cAMP, and four of these are restricted to the prokaryotes. The role of cAMP has been implicated in the virulence and regulation of secondary metabolites in the phylum Actinobacteria, which contains important pathogens, such asMycobacterium tuberculosis, M. leprae, M. bovisandCorynebacterium, and industrial organisms from the genusStreptomyces. We have analysed the actinobacterial genome sequences found in current databases for the presence of different classes of nucleotide cyclases, and find that only class III cyclases are present in these organisms. Importantly, prominent members such asM. tuberculosisandM. lepraehave 17 and 4 class III cyclases, respectively, encoded in their genomes, some of which display interesting domain fusions seen for the first time. In addition, a pseudogene corresponding to a cyclase fromM. aviumhas been identified as the only cyclase pseudogene inM. tuberculosisandM. bovis. TheCorynebacteriumandStreptomycesgenomes encode only a single adenylyl cyclase each, both of which have corresponding orthologues inM. tuberculosis. A clustering of the cyclase domains in Actinobacteria reveals the presence of typical eukaryote-like, fungi-like and other bacteria-like class III cyclase sequences within this phylum, suggesting that these proteins may have significant roles to play in this important group of organisms.


2003 ◽  
Vol 369 (3) ◽  
pp. 573-581 ◽  
Author(s):  
Grit D. STRAGANZ ◽  
Anton GLIEDER ◽  
Lothar BRECKER ◽  
Douglas W. RIBBONS ◽  
Walter STEINER

The toxicity of acetylacetone has been demonstrated in various studies. Little is known, however, about metabolic pathways for its detoxification or mineralization. Data presented here describe for the first time the microbial degradation of acetylacetone and the characterization of a novel enzyme that initiates the metabolic pathway. From an Acinetobacter johnsonii strain that grew with acetylacetone as the sole carbon source, an inducible acetylacetone-cleaving enzyme was purified to homogeneity. The corresponding gene, coding for a 153 amino acid sequence that does not show any significant relationship to other known protein sequences, was cloned and overexpressed in Escherichia coli and gave high yields of active enzyme. The enzyme cleaves acetylacetone to equimolar amounts of methylglyoxal and acetate, consuming one equivalent of molecular oxygen. No exogenous cofactor is required, but Fe2+ is bound to the active protein and essential for its catalytic activity. The enzyme has a high affinity for acetylacetone with a Km of 9.1μM and a kcat of 8.5s-1. A metabolic pathway for acetylacetone degradation and the putative relationship of this novel enzyme to previously described dioxygenases are discussed.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 178
Author(s):  
Yu Ra Lee ◽  
Bark Lynn Lew ◽  
Woo Young Sim ◽  
Jongki Hong ◽  
Bong Chul Chung

Pattern baldness has been associated with the male hormone, dihydrotestosterone. In this study, we tried to determine how the overall metabolic pathways of pattern baldness differ in patients and in normal controls. Our study aimed to identify alterations in hair metabolomic profiles in order to identify possible markers of pattern baldness according to sex. Untargeted metabolomics profiling in pattern baldness patients and control subjects was conducted using ultra-performance liquid chromatography-mass spectrometry. To identify significantly altered metabolic pathways, partial least squares discriminant analysis was performed. Our analysis indicated differences in steroid biosynthesis pathway in both males and females. However, there was a remarkable difference in the androgen metabolic pathway in males, and the estrogen metabolic and arachidonic acid pathways in females. For the first time, we were able to confirm the metabolic pathway in pattern baldness patients using hair samples. Our finding improves understanding of pattern baldness and highlights the need to link pattern baldness and sex-related differences.


2020 ◽  
Author(s):  
Peng Wu ◽  
Xiang Li ◽  
Xian Liu ◽  
Xu Xu ◽  
Yu Zhang ◽  
...  

Abstract Background: Euryale ferox Salisb. is an annual aquatic herb and the only species belonging to the genus Euryale in the Nymphaeaceae family. E. ferox seeds are used in medicine and diets. Starch is the main factor affecting E. ferox seed quality, but its regulatory mechanism has not been elucidated. Results: Herein, four time points of seed development, including after flowering T1 (10 days), T2 (20 days), T3 (30 days) and T4 (40 days), were investigated by using RNA-Seq and iTRAQ technology. Using weighted gene co-expression network analyses (WGCNAs), co-expressed genes and hub genes were identified for each module. Of particular importance are the discoveries of specific modules for seed starch during the seed developmental stages. The candidate regulators of seed starch are involved in the hormonal signaling pathways. Three ABA signaling receptor kinases, EfPYR1, EfSnRK2.1 and EfSnRK2.2, were identified as hub genes functioning in starch synthesis during the seed maturation process. The changes in expression pattern, ABA and starch content also indicated that ABA is positively correlated with starch. Conclusions: Together, these results indicate that E. ferox seed accumulation of starch is promoted by ABA, providing new insights into the regulatory mechanism of starch synthesis in E. ferox seeds.


Sign in / Sign up

Export Citation Format

Share Document