scholarly journals Toward the Development of Combined Artificial Sensing Systems for Food Quality Evaluation: A Review on the Application of Data Fusion of Electronic Noses, Electronic Tongues and Electronic Eyes

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 577
Author(s):  
Rosalba Calvini ◽  
Laura Pigani

Devices known as electronic noses (ENs), electronic tongues (ETs), and electronic eyes (EEs) have been developed in recent years in the in situ study of real matrices with little or no manipulation of the sample at all. The final goal could be the evaluation of overall quality parameters such as sensory features, indicated by the “smell”, “taste”, and “color” of the sample under investigation or in the quantitative detection of analytes. The output of these sensing systems can be analyzed using multivariate data analysis strategies to relate specific patterns in the signals with the required information. In addition, using suitable data-fusion techniques, the combination of data collected from ETs, ENs, and EEs can provide more accurate information about the sample than any of the individual sensing devices. This review’s purpose is to collect recent advances in the development of combined ET, EN, and EE systems for assessing food quality, paying particular attention to the different data-fusion strategies applied.

1997 ◽  
Vol 25 ◽  
pp. 241-245 ◽  
Author(s):  
David A. Robinson

Accurate information concerning snow cover, and associated impacts of snow on regional surface albedo, needs to be available for empirical studies and for the validation of climate models. Here, a new integrated dataset for Northern Hemisphere lands is discussed, including files of visible and microwave satellite-derived snow estimates and in situ station data. These files will be used to examine snow extent, snow depth and surface albedo over five-day intervals, and have been generated using geographic-information system techniques. Visible and station observations extend from 1972 to present, and microwave estimates from 1979 to present, The 1×1° gridded files permit the strengths and weaknesses of the individual data sources to be identified and quantified. Also included is a hemispheric time series of snow extern derived from the visible satellite file. Of note are the two pronounced regimes of Northern Hemisphere extent during the past several decades. Between 1972 and 1985, 12 month running means of snow extent fluctuated around a mean of 25.9 × 10 km2. An abrupt transition occurred in 1986 and 1987, and since then mean annual extern has been 24.2 × 106km2. Recent decreases are found from late winter to early summer.


1997 ◽  
Vol 25 ◽  
pp. 241-245 ◽  
Author(s):  
David A. Robinson

Accurate information concerning snow cover, and associated impacts of snow on regional surface albedo, needs to be available for empirical studies and for the validation of climate models. Here, a new integrated dataset for Northern Hemisphere lands is discussed, including files of visible and microwave satellite-derived snow estimates and in situ station data. These files will be used to examine snow extent, snow depth and surface albedo over five-day intervals, and have been generated using geographic-information system techniques. Visible and station observations extend from 1972 to present, and microwave estimates from 1979 to present, The 1×1° gridded files permit the strengths and weaknesses of the individual data sources to be identified and quantified. Also included is a hemispheric time series of snow extern derived from the visible satellite file. Of note are the two pronounced regimes of Northern Hemisphere extent during the past several decades. Between 1972 and 1985, 12 month running means of snow extent fluctuated around a mean of 25.9 × 106 km2. An abrupt transition occurred in 1986 and 1987, and since then mean annual extern has been 24.2 × 106 km2. Recent decreases are found from late winter to early summer.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1635
Author(s):  
Ya Su ◽  
Rongxin Fu ◽  
Wenli Du ◽  
Han Yang ◽  
Li Ma ◽  
...  

Quantitative measurement of single cells can provide in-depth information about cell morphology and metabolism. However, current live-cell imaging techniques have a lack of quantitative detection ability. Herein, we proposed a label-free and quantitative multichannel wide-field interferometric imaging (MWII) technique with femtogram dry mass sensitivity to monitor single-cell metabolism long-term in situ culture. We demonstrated that MWII could reveal the intrinsic status of cells despite fluctuating culture conditions with 3.48 nm optical path difference sensitivity, 0.97 fg dry mass sensitivity and 2.4% average maximum relative change (maximum change/average) in dry mass. Utilizing the MWII system, different intrinsic cell growth characteristics of dry mass between HeLa cells and Human Cervical Epithelial Cells (HCerEpiC) were studied. The dry mass of HeLa cells consistently increased before the M phase, whereas that of HCerEpiC increased and then decreased. The maximum growth rate of HeLa cells was 11.7% higher than that of HCerEpiC. Furthermore, HeLa cells were treated with Gemcitabine to reveal the relationship between single-cell heterogeneity and chemotherapeutic efficacy. The results show that cells with higher nuclear dry mass and nuclear density standard deviations were more likely to survive the chemotherapy. In conclusion, MWII was presented as a technique for single-cell dry mass quantitative measurement, which had significant potential applications for cell growth dynamics research, cell subtype analysis, cell health characterization, medication guidance and adjuvant drug development.


Nanoscale ◽  
2021 ◽  
Author(s):  
Lixiang Xing ◽  
Cui Wang ◽  
Yi Cao ◽  
Jihui Zhang ◽  
Haibing Xia

In this work, macroscopical monolayer films of ordered arrays of gold nanoparticles (MMF-OA-Au NPs) are successfully prepared at the interfaces of toluene-diethylene glycol (DEG) with a water volume fraction of...


2021 ◽  
pp. 000370282199044
Author(s):  
Wubin Weng ◽  
Shen Li ◽  
Marcus Aldén ◽  
Zhongshan Li

Ammonia (NH3) is regarded as an important nitrogen oxides (NOx) precursor and also as an effective reductant for NOx removal in energy utilization through combustion, and it has recently become an attractive non-carbon alternative fuel. To have a better understanding of thermochemical properties of NH3, accurate in situ detection of NH3 in high temperature environments is desirable. Ultraviolet (UV) absorption spectroscopy is a feasible technique. To achieve quantitative measurements, spectrally resolved UV absorption cross-sections of NH3 in hot gas environments at different temperatures from 295 K to 590 K were experimentally measured for the first time. Based on the experimental results, vibrational constants of NH3 were determined and used for the calculation of the absorption cross-section of NH3 at high temperatures above 590 K using the PGOPHER software. The investigated UV spectra covered the range of wavelengths from 190 nm to 230 nm, where spectral structures of the [Formula: see text] transition of NH3 in the umbrella bending mode, v2, were recognized. The absorption cross-section was found to decrease at higher temperatures. For example, the absorption cross-section peak of the (6, 0) vibrational band of NH3 decreases from ∼2 × 10−17 to ∼0.5 × 10−17 cm2/molecule with the increase of temperature from 295 K to 1570 K. Using the obtained absorption cross-section, in situ nonintrusive quantification of NH3 in different hot gas environments was achieved with a detection limit varying from below 10 parts per million (ppm) to around 200 ppm as temperature increased from 295 K to 1570 K. The quantitative measurement was applied to an experimental investigation of NH3 combustion process. The concentrations of NH3 and nitric oxide (NO) in the post flame zone of NH3–methane (CH4)–air premixed flames at different equivalence ratios were measured.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3874
Author(s):  
Dominika Veselinyová ◽  
Jana Mašlanková ◽  
Katarina Kalinová ◽  
Helena Mičková ◽  
Mária Mareková ◽  
...  

We are experiencing rapid progress in all types of imaging techniques used in the detection of various numbers and types of mutation. In situ hybridization (ISH) is the primary technique for the discovery of mutation agents, which are presented in a variety of cells. The ability of DNA to complementary bind is one of the main principles in every method used in ISH. From the first use of in situ techniques, scientists paid attention to the improvement of the probe design and detection, to enhance the fluorescent signal intensity and inhibition of cross-hybrid presence. This article discusses the individual types and modifications, and is focused on explaining the principles and limitations of ISH division on different types of probes. The article describes a design of probes for individual types of in situ hybridization (ISH), as well as the gradual combination of several laboratory procedures to achieve the highest possible sensitivity and to prevent undesirable events accompanying hybridization. The article also informs about applications of the methodology, in practice and in research, to detect cell to cell communication and principles of gene silencing, process of oncogenesis, and many other unknown processes taking place in organisms at the DNA/RNA level.


2016 ◽  
Vol 150 (2) ◽  
pp. 139-149 ◽  
Author(s):  
Margret Scholz ◽  
Galina Pendinen

The pairing behaviour of the individual chromosome arms of Hordeum vulgare (Hv) with their homoeologous arms of H. bulbosum (Hb) at metaphase I of meiosis in tetraploid Hb × Hv hybrids and the frequencies of recombined Hv chromosome arms in selfed offspring were studied on differentially visualized chromosomes after fluorescent in situ hybridisation. The frequencies of paired Hv-Hb arms in the F2 and F3 hybrids were correlated with the frequencies of recombined Hv chromosomes in progenies. Self-generation of hybrids, the number of Hv and Hb chromosomes, and the number of recombined Hv chromosomes of the hybrids strongly influenced the Hv-Hb pairing frequency in meiosis. Within the offspring of F2 and F3 hybrids both Hv plants and hybrids were detected. In contrast, all progenies of the F4 hybrid were hybrids which exhibited centromere misdivisions. The highest frequencies of homoeologous pairing in hybrids and most recombinants were obtained for the barley chromosome 1HL. Recombinants for 4HL, 5HS, 6HS, and 7HS were rarely found. Meiotic pairing and recombinants involving chromosome 1HS were never observed. The results of this study demonstrate that fertile tetraploid interspecific hybrids with a high intergenomic pairing at meiosis are valuable basic material for introgression breeding in barley.


2018 ◽  
Vol 22 (12) ◽  
pp. 6241-6255 ◽  
Author(s):  
Soumendra N. Bhanja ◽  
Xiaokun Zhang ◽  
Junye Wang

Abstract. Groundwater is one of the most important natural resources for economic development and environmental sustainability. In this study, we estimated groundwater storage in 11 major river basins across Alberta, Canada, using a combination of remote sensing (Gravity Recovery and Climate Experiment, GRACE), in situ surface water data, and land surface modeling estimates (GWSAsat). We applied separate calculations for unconfined and confined aquifers, for the first time, to represent their hydrogeological differences. Storage coefficients for the individual wells were incorporated to compute the monthly in situ groundwater storage (GWSAobs). The GWSAsat values from the two satellite-based products were compared with GWSAobs estimates. The estimates of GWSAsat were in good agreement with the GWSAobs in terms of pattern and magnitude (e.g., RMSE ranged from 2 to 14 cm). While comparing GWSAsat with GWSAobs, most of the statistical analyses provide mixed responses; however the Hodrick–Prescott trend analysis clearly showed a better performance of the GRACE-mascon estimate. The results showed trends of GWSAobs depletion in 5 of the 11 basins. Our results indicate that precipitation played an important role in influencing the GWSAobs variation in 4 of the 11 basins studied. A combination of rainfall and snowmelt positively influences the GWSAobs in six basins. Water budget analysis showed an availability of comparatively lower terrestrial water in 9 of the 11 basins in the study period. Historical groundwater recharge estimates indicate a reduction of groundwater recharge in eight basins during 1960–2009. The output of this study could be used to develop sustainable water withdrawal strategies in Alberta, Canada.


CORROSION ◽  
10.5006/2581 ◽  
2017 ◽  
Vol 74 (3) ◽  
pp. 312-325 ◽  
Author(s):  
Cheng Man ◽  
Chaofang Dong ◽  
Kui Xiao ◽  
Qiang Yu ◽  
Xiaogang Li

In situ atomic force microscopy, scanning Kelvin probe force microscopy, and potential pulse technology were used to study the pitting behavior induced by inclusions in AM355 martensitic stainless steel. The MnS-(Cr, Mn, Al)O duplex inclusion exhibited the highest sensitivity to the pitting corrosion with respect to the individual MnS and (Cr, Mn, Al)O inclusions. When exposed to a solution containing Cl−, the selective dissolution occurred on the sulfide segment of the duplex inclusion, leading to trenching along the oxide part. The dissolution mechanism of MnS segment in the duplex inclusion is similar to the individual MnS inclusion. The Cr depletion in the boundary layer at the inclusion/metal interface promoted the transition from metastable to stable pitting corrosion in the duplex inclusion.


Sign in / Sign up

Export Citation Format

Share Document