scholarly journals Anabaenopeptins: What We Know So Far

Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 522
Author(s):  
Patrick Romano Monteiro ◽  
Samuel Cavalcante do Amaral ◽  
Andrei Santos Siqueira ◽  
Luciana Pereira Xavier ◽  
Agenor Valadares Santos

Cyanobacteria are microorganisms with photosynthetic mechanisms capable of colonizing several distinct environments worldwide. They can produce a vast spectrum of bioactive compounds with different properties, resulting in an improved adaptative capacity. Their richness in secondary metabolites is related to their unique and diverse metabolic apparatus, such as Non-Ribosomal Peptide Synthetases (NRPSs). One important class of peptides produced by the non-ribosomal pathway is anabaenopeptins. These cyclic hexapeptides demonstrated inhibitory activity towards phosphatases and proteases, which could be related to their toxicity and adaptiveness against zooplankters and crustaceans. Thus, this review aims to identify key features related to anabaenopeptins, including the diversity of their structure, occurrence, the biosynthetic steps for their production, ecological roles, and biotechnological applications.

2020 ◽  
Vol 37 (9) ◽  
pp. 1181-1206 ◽  
Author(s):  
Liwen Zhang ◽  
Opemipo Esther Fasoyin ◽  
István Molnár ◽  
Yuquan Xu

Hypocrealean entomopathogenic fungi produce a large variety of secondary metabolites with diverse ecological roles. These compounds serve as nutraceuticals and traditional remedies, and as drug leads for the modern pharmaceutical industry.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-14
Author(s):  
Carine M.N. Ngaffo ◽  
Simplice B. Tankeo ◽  
Michel-Gael F. Guefack ◽  
Brice E. N. Wamba ◽  
Paul Nayim ◽  
...  

Abstract Background: Bacterial infections involving the multidrug resistant (MDR) strains are among the top leading causes of death throughout the world. Healthcare system across the globe has been suffering from an extra-ordinary burden in terms of looking for the new and more potent antimicrobial compounds. The aim of the present study was to determine the antibacterial activity of some Cameroonian edible plants (Garcinia lucida bark, Phoenix dactylifera pericarps, Theobroma cacao pod, Solanum macrocarpon leaves and Termitomyces titanicus whole plant) and their antibiotics-potentiation effects against some MDR Gram-negative bacteria phenotypes expressing efflux pumps (Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa and Providencia stuartii strains). Methods: The antibacterial activities of plant extract alone and in combination with usual antibiotics were carried out using the micro-dilution method. The effects of the most active plant extract (Garcinia lucida bark) on H+-ATPase-mediated proton pumps and on bacterial growth kinetic were performed using experimental protocols, while qualitative reference methods were used to highligh the major groups of secondary metabolites present in the extracts. Results: Qualitative phytochemical screening of plant extracts indicated that all analysed secondary metabolites were present in Theobroma cacao and Termitomyces titanicus while one (saponins) of them was absent in Garcinia lucida and Solanum macrocarpon. Only three of them (polyphenols, flavonoids and saponins) were detected in Phoenix dactylifera. Antibacterial essays showed that G. lucida was the most active plant as it inhibited the growth of all studied bacteria with strong activity (MIC<100 µg/mL) against E. coli ATCC8739, significant activity (100≤MIC≤512 µg/mL) against 80% of bacteria and moderate activity (512<MIC≤2048 µg/mL) against E. coli AG100A and E. aerogenes (EA289 and CM64). It was followed by T. cacao and S. macrocarpon extracts which exhibited an antibacterial potential against 95% and 80% of bacterial strains, respectively. These three extracts exhibited a bactericidal effect on a few bacteria. Extracts from T. titanicus and P. dactylifera were less active as they moderately (512<MIC≤2048 µg/mL) inhibited the growth of 35% and 10% of bacteria. All extracts selectively potentiated the activities of all antibiotics with improvement activity factors (IAF) ranging from 2 to 256. G. lucida, T. cacao and S. macrocarpon potentiated the activities of 100%, 89% and 67% of antibiotics respectively against more than 70%, suggesting that they contain bioactive compounds which could be considered as efflux pumps inhibitors. Whereas T. titanicus and P. dactylifera improved the activities of almost 40% and 20% of antibiotics, respectively. This increase of activities also characterizes synergistic effects between antibiotics and these bioactive compounds. G. lucida extract at all tested concentrations, strongly inhibited the growth of bacterial strain E. coli ATCC8739 and exhibited an inhibitory effect on this bacterial H+-ATPase-mediated proton pumps increasing the pH of the medium. Conclusion: The overall results indicated that food plants among which G. lucida, T. cacao and S. macrocarpon could have a benefit interest in combatting resistant types of bacteria. Keywords: Food plants; infectious diseases; MDR bacteria; efflux pumps; antibiotics; secondary metabolites.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1340
Author(s):  
Ying Kong ◽  
Huan Wang ◽  
Lixin Lang ◽  
Xiaoying Dou ◽  
Jinrong Bai

The bulbs of several Lilium species are considered to be both functional foods and traditional medicine in northern and eastern Asia. Considering the limited information regarding the specific bioactive compounds contributing to the functional properties of these bulbs, we compared the secondary metabolites of ten Lilium bulb samples belonging to five different species, using an ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based secondary metabolomics approach. In total, 245 secondary metabolites were detected; further, more metabolites were detected from purple Lilium bulbs (217 compounds) than from white bulbs (123–171 compounds). Similar metabolite profiles were detected in samples within the same species irrespective of where they were collected. By combining herbal analysis and screening differential metabolites, steroid saponins were considered the key bioactive compounds in medicinal lilies. Of the 14 saponins detected, none were accumulated in the bulbs of L. davidii var. willmottiae, also called sweet lily. The purple bulbs of L. regale accumulated more secondary metabolites, and, notably, more phenolic acid compounds and flavonoids. Overall, this study elucidates the differential metabolites in lily bulbs with varying functions and colors and provides a reference for further research on functional foods and the medicinal efficacy of Lilium species.


Author(s):  
Parameswari P ◽  
Devika Rengaswamy

<p>ABSTRACT<br />Objective: The points of this exploration work were to decide the quantitative examination of bioactive mixes. Customarily, cutting edge meds rely<br />on the phytochemicals got from the plant source in bigger extents. Numerous bioactive auxiliary metabolites have a positive metabolic reaction on<br />different human diseases.<br />Methods: In the present examination, Artemisia nilagirica, leaves were gathered, dried, powdered and put away in hermetically sealed compartments<br />for quantitative investigation of phytochemicals according to standard strategies.<br />Results: The methanolic leaf concentrate of enrolled 4.33 mg of alkaloids, 1.22 mg of saponins, 12.4 mg of tannins, 24.3 mg of glycosides, 10.2 mg<br />terpenoids, 1.33 mg of coumarin, 59.4 mg of amino acids, 12.2 mg of fatty acids, 17.2 mg of flavonoids, 10.2 mg of phenols, and steroids in follows<br />separately.<br />Conclusion: The plant has a high helpful quality as far as an assortment of phytochemicals from leaf remove and had let to a sure level toward<br />extraction and refinement of specific bioactive mixes for human nourishment.<br />Keywords: Artemisia nilagirica, Secondary metabolites, Quantitative analysis, Leaf extract, Flavonoids.</p>


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4504
Author(s):  
Muhanna Al-shaibani ◽  
Radin Maya Saphira Radin Mohamed ◽  
Nik Sidik ◽  
Hesham Enshasy ◽  
Adel Al-Gheethi ◽  
...  

The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities’ well-being.


2021 ◽  
Vol 7 (1) ◽  
pp. 51
Author(s):  
Allen Grace Niego ◽  
Olivier Raspé ◽  
Naritsada Thongklang ◽  
Rawiwan Charoensup ◽  
Saisamorn Lumyong ◽  
...  

The oudemansielloid/xeruloid taxa Hymenopellis, Mucidula, Oudemansiella, and Xerula are genera of Basidiomycota that constitute an important resource of bioactive compounds. Numerous studies have shown antimicrobial, anti-oxidative, anti-cancer, anti-inflammatory and other bioactivities of their extracts. The bioactive principles can be divided into two major groups: (a) hydrophilic polysaccharides with relatively high molecular weights and (b) low molecular medium polar secondary metabolites, such as the antifungal strobilurins. In this review, we summarize the state of the art on biodiversity, cultivation of the fungi and bioactivities of their secondary metabolites and discuss future applications. Although the strobilurins are well-documented, with commercial applications as agrochemical fungicides, there are also other known compounds from this group that have not yet been well-studied. Polysaccharides, dihydro-citrinone phenol A acid, scalusamides, and acetylenic lactones such as xerulin, also have potential applications in the nutraceutical, pharmaceutical and medicinal market and should be further explored. Further studies are recommended to isolate high quality bioactive compounds and fully understand their modes of action. Given that only few species of oudemansielloid/xeruloid mushrooms have been explored for their production of secondary metabolites, these taxa represent unexplored sources of potentially useful and novel bioactive metabolites.


Author(s):  
Ebuka Leonard Onyeyilim ◽  
Mercy Amarachi Ezeokonkwo ◽  
David Izuchukwu Ugwu ◽  
Chiamaka Peace Uzoewulu ◽  
Florence Uchenna Eze ◽  
...  

: Carbohydrazides and their Schiff bases are important class of heterocycles that are not only employed in the area of organic chemistry, but also have tremendous applications in physical and inorganic chemistry. A series of potential bioactive compounds, containing carbohydrazide functionality and their hydrazone derivatives have been synthesized and screened for antibacterial, anticancer, antifungal and anti-inflammatory etc. This brief review discloses some synthetic route to so many reported carbohydrazides, their Schiff bases, their biological activities and their structure activity relationship.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 379 ◽  
Author(s):  
Dhurva Prasad Gauchan ◽  
Pratistha Kandel ◽  
Astha Tuladhar ◽  
Ashesh Acharya ◽  
Upendra Kadel ◽  
...  

Background: Endophytic fungi are largely underexplored in the discovery of natural bioactive products though being rich sources of novel compounds with promising pharmaceutical potential. In this study, Taxus wallichiana, which has huge medicinal value, was investigated for its endophytic diversity and capability to produce bioactive secondary metabolites by analyzing antioxidant, antimicrobial and cytotoxic properties. Methods: The endophytes were identified by ITS-PCR using genomic DNA samples. The secondary metabolites were extracted by solvent extraction method using ethyl acetate. The antioxidant activity was analyzed by Thin Layer Chromatography, Total Phenol Content (TPC), Total Flavonoid Content (TFC) and DPPH assay, and the antimicrobial activity was analyzed by agar-well diffusion method. Brine shrimp lethality assay was used to analyze the cytotoxicity of the fungal extracts. Results: Out of 16 different Taxus trees sampled from different locations of Dhorpatan, 13 distinctive endophytic fungi were isolated and grouped into 9 different genera: Bjerkandera, Trichoderma, Preussia, Botrytis, Arthrinium, Alternaria, Cladosporium, Sporormiella and Daldinia. The ethyl acetate extracts isolated from three endophytic fungi: Alternaria alternata, Cladosporium cladosporioides and Alternaria brassicae showed significant TPC values of 204±6.144, 312.3±2.147 and 152.7±4.958µg GAE/mg of dry extract, respectively, and TFC values of 177.9±2.911, 644.1±4.202 and 96.38±3.851µg RE/mg of dry extract, respectively. Furthermore, these three extracts showed a dose dependent radical scavenging activity with IC50 concentration of 22.85, 22.15 and 23.001 µg/ml, respectively. The extracts of C. cladosporioides and A. brassicae also showed promising antimicrobial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis with a minimum inhibitory concentration of 250μg/ml for all bacteria. Both the samples showed cytotoxic property against shrimp nauplii with LC50 of 104.2 and 125.9µg/ml, respectively. Conclusions: The crude fungal extracts obtained from endophytes: A. alternata, C. cladosporioides and A. brassicae upon purification and further identification of the bioactive compounds can be a fascinating source for novel pharmaceutical agents.


Author(s):  
K. S. Potapenko ◽  
N. V. Korotaieva ◽  
V. О. Ivanytsia

Marine actinobacteria are active producers and an unused rich source of various biologically active secondary metabolites, such as antibiotics, antitumor, antiviral and antiinflammatory compounds, biopesticides, plant growth hormones, pigments, enzymes, enzyme inhibitors.In this review describes data from current literature sources for the period from 2017 to 2021 about various bioactive compounds that produce marine actinobacteria, their antibiotic activity and biotechnological potential, the main groups of secondary metabolites and their producers.


Sign in / Sign up

Export Citation Format

Share Document