scholarly journals Pathogenicity of the Canadian Delmarva (DMV/1639) Infectious Bronchitis Virus (IBV) on Female Reproductive Tract of Chickens

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2488
Author(s):  
Mohamed S. H. Hassan ◽  
Ahmed Ali ◽  
Sabrina M. Buharideen ◽  
Dayna Goldsmith ◽  
Carla S. Coffin ◽  
...  

Infectious bronchitis virus (IBV) infection causes significant economic losses to various sectors of the poultry industry worldwide. Over the past few years, the incidence of false layer syndrome in Eastern Canadian layer flocks has been associated with the increased prevalence of the IBV Delmarva (DMV)/1639 strain. In this study, 1-day-old specific-pathogen-free (SPF) hens were infected with the Canadian DMV/1639 strain and observed until 16 weeks of age in order to determine if the IBV DMV/1639 strain is causing false layer syndrome. Early after infection, the virus showed a wide tissue distribution with characteristic gross and histopathological lesions in the respiratory tract and kidney. Around 60–70% of the infected hens demonstrated continuous cloacal viral shedding until the end of the experiment (at 16 weeks) which was associated with high IBV genome loads detected in the cecal tonsils. The experiment confirmed the field observations that the Canadian DMV/1639 strain is highly pathogenic to the female reproductive tract causing marked cystic lesions in the oviduct. Moreover, significant histopathological damage was observed in the ovary. Our study provides a detailed description of the pathological consequences of the IBV DMV/1639 strain circulating in an important poultry production sector.

Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 50
Author(s):  
Lei Zuo ◽  
Wenjun Yan ◽  
Zhou Song ◽  
Hao Li ◽  
Xin Xie ◽  
...  

Avian coronavirus infectious bronchitis virus (IBV) causes severe economic losses in the poultry industry, but its control is hampered by the continuous emergence of new genotypes and the lack of cross-protection among different IBV genotypes. We designed a new immunogen based on a spike with the consensus nucleotide sequence (S_con) that may overcome the extraordinary genetic diversity of IBV. S_con was cloned into a pVAX1 vector to form a new IBV DNA vaccine, pV-S_con. pV-S_con could be correctly expressed in HD11 cells with corresponding post-translational modification, and induced a neutralizing antibody response to the Vero-cell-adapted IBV strain Beaudette (p65) in mice. To further evaluate its immunogenicity, specific-pathogen-free (SPF) chickens were immunized with the pV-S_con plasmid and compared with the control pVAX1 vector and the H120 vaccine. Detection of IBV-specific antibodies and cell cytokines (IL-4 and IFN-γ) indicated that vaccination with pV-S_con efficiently induced both humoral and cellular immune responses. After challenge with the heterologous strain M41, virus shedding and virus loading in tissues was significantly reduced both by pV-S_con and its homologous vaccine H120. Thus, pV-S_con is a promising vaccine candidate for IBV, and the consensus approach is an appealing method for vaccine design in viruses with high variability.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 652
Author(s):  
Seung-Min Hong ◽  
Se-Hee An ◽  
Chung-Young Lee ◽  
Chang-Seon Song ◽  
Kang-Seuk Choi ◽  
...  

We established a cold-adapted infectious bronchitis virus (BP-caKII) by passaging a field virus through specific pathogen-free embryonated eggs 20 times at 32 °C. We characterized its growth kinetics and pathogenicity in embryonated eggs, and its tropism and persistence in different tissues from chickens; then, we evaluated pathogenicity by using a new premature reproductive tract pathogenicity model. Furthermore, we determined the complete genomic sequence of BP-caKII to understand the genetic changes related to cold adaptation. According to our results, BP-caKII clustered with the KII genotype viruses K2 and KM91, and showed less pathogenicity than K2, a live attenuated vaccine strain. BP-caKII showed delayed viremia, resulting in its delayed dissemination to the kidneys and cecal tonsils compared to K2 and KM91, the latter of which is a pathogenic field strain. A comparative genomics study revealed similar nucleotide sequences between BP-caKII, K2 and KM91 but clearly showed different mutations among them. BP-caKII shared several mutations with K2 (nsp13, 14, 15 and 16) following embryo adaptation but acquired multiple additional mutations in nonstructural proteins (nsp3, 4 and 12), spike proteins and nucleocapsid proteins following cold adaptation. Thus, the establishment of BP-caKII and the identified mutations in this study may provide insight into the genetic background of embryo and cold adaptations, and the attenuation of coronaviruses.


2020 ◽  
Vol 7 (4) ◽  
pp. 204
Author(s):  
Hassanein H. Abozeid ◽  
Mahmoud M. Naguib

Infectious bronchitis virus (IBV) is a highly evolving avian pathogen that has increasingly imposed a negative impact on poultry industry worldwide. In the last 20 years, IBV has been continuously circulating among chicken flocks in Egypt causing huge economic losses to poultry production. Multiple IBV genotypes, namely, GI-1, GI-13, GI-16, and GI-23 have been reported in Egypt possessing different genetic and pathogenic features. Different vaccine programs are being used to control the spread of the disease in Egypt. However, the virus continues to spread and evolve where multiple IBV variants and several recombination evidence have been described. In this review, we highlight the current knowledge concerning IBV circulation, genesis, and vaccination strategies in Egypt. In addition, we analyze representative Egyptian IBV strains from an evolutionary perspective based on available data of their S1 gene. We also provide insight into the importance of surveillance programs and share our perspectives for better control of IBV circulating in Egypt.


2018 ◽  
Vol 4 (1) ◽  
pp. 132-136 ◽  
Author(s):  
Zafar Ahmed Bhuiyan ◽  
Md Giasuddin ◽  
Zahed Uddin Mahmood Khan

Infectious bronchitis virus (IBV) is a highly contagious viral disease of the chicken. It is possibly the most economically important viral respiratory disease of chicken after Avian Influenza and Newcastle disease. The virus also affects the female reproductive tract, causing poor quality of egg and loss of egg production. The study was conducted in four types of chicken (broiler, layer, sonali and Deshi) from 7 sub-districts under 4 districts of Bangladesh. Total 833 blood samples from 103 farms were collected and subjected to indirect ELISA test by commercially available IBV ELISA kits to detect specific antibodies against IBV. In overall 59.30% seroprevalence observed, 23.82% was found in broiler, 97.87% in layer, 71.83% in sonali and 83.46% in Deshi types of chickens. Broiler samples showed lowest seroprevalence with high CV (CV%=171.38), among them 76.18% were not seroconvert because of high maternal antibody or poor vaccine response. Layers showed highest seroprevalence with CV% 58.86 that is 18.00% chickens shows titer above 14000 which indicated field infection. Deshi chickens were not commercially vaccinated even though they had high seroprevalence rates 83.46% with mean titer 5333 and CV% 79.88, indicating that IBV is circulating as endemic diseases in the selected areas. Sonali chickens now reared as commercial chicken, have lower seroprevalence rates with mean titer 3160, CV% 128.39 indicating that these birds were not properly vaccinated as they required. To prevent the flocks from IBV, live and attenuated vaccination is required according to circulating strains.Asian J. Med. Biol. Res. March 2018, 4(1): 132-136


2020 ◽  
Vol 48 ◽  
Author(s):  
Herson Da Silva Costa ◽  
Felipe Venceslau Câmara ◽  
Ferdinando Fernandes Bezerra Vinicius ◽  
Carlos Eduardo Bezerra de Moura ◽  
Alexsandra Fernandes Pereira ◽  
...  

Background: Fetal attachments, placentation and embryonic development have been widely discussed in rodents such as agoutis and cavies, as well as research on glycosaminoglycans (GAGs) in rats and rabbits. Moreover, studies on buffalo, cattle and sheep are described in ruminants, and work has also been reported in sheep with GAGs in placentoma. However, further studies are needed in this regard, since there are reports of economic losses associated with reproductive failures described for cattle such as changes in the chorion and allantois, and in sheep in which changes between the transition from vitelline to allantois circulation have been discussed.  Review: In relation to embryonic development, detailed studies have been described in rodents such as rats (12 days old), desert mouse (15 days old) and agoutis at 30 days. Macroscopic structures such as the cephalic region, nose, optic vesicle, cervical curvature, thoracic and pelvic limbs were observed, as well as microscopic structures such as the pituitary, lung, heart, brain cavity, liver, retina, and ossification regions. There are reports of buffalo and cattle studies in ruminants describing early embryonic development. However, the research in the case of sheep is limited, meaning there is only the ultrasound examination, such as gestational diagnosis and morphometric measurement of the embryonic vesicle. Still, studies with umbilical funicular and placental development of sheep with different gestational ages can be highlighted. Regarding extraembryonic annexes, four important structures which contribute to embryonic maintenance have been reported. These are called the chorion, amnion, allantois and yolk sac, respectively, and are responsible for originating the placenta, embryonic protection, collecting metabolic waste and early embryonic nutrition. In addition, correlating the annexes gives rise to the placentation process, which were described two models; the first is transient, called chorioviteline, and the second is called chorioallantoid, which represents the definitive model. Allied to the gestational process, the importance of glycosaminoglycans (GAGs) and proteoglycans are worth mentioning, as they are essential components of the extracellular matrix. They are related in the implantation process, tissue organization during gestation, and also in placental angiogenesis, as described in ruminants (i.e. involved in the vascular growth that accompanies the development of the placenta), which in turn causes an increase in blood flow in this organ, and constitutes a determining factor for fetal development. Conclusion: Such studies regarding the embryonic development of ruminants are still limited to sonographic description and some information is only available in the context of extraembryonic membranes. For glycosaminoglycans, chondroitin sulfate, dermatan sulfate, heparan sulfate and hyaluronic acid are identified in the reproductive tract and placenta. We intend to produce important information for the reproductive and sanitary management of ruminants with the information in this article, providing data to stimulate new studies aiming to minimize the occurrence of embryonic death and economic losses. In addition, further studies on GAGs are needed to better understand their true correlation with gestation, so they can intercede through supplementation and minimize reproductive losses.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Abdullah I. A. Al-Mubarak ◽  
Anwar A. G. Al-Kubati

Avian infectious bronchitis virus (IBV) is an evolving and dynamic virus that causes major economic losses for the poultry industry worldwide. Continuous evolution and emergence of new variants of this virus are the major challenges for controlling the disease with routine vaccination. Successful vaccination usually requires the use of a homologous vaccine, which in turn necessitates continuous investigation of the circulating strains. Herein, we performed a reverse transcriptase-polymerase chain reaction- (RT-PCR-) based investigation in broiler chicken flocks of the Eastern Region of Saudi Arabia. IBV was detected in 36.5% of the tested flocks (42 out of 115) from January 2012 to March 2014. Direct sequencing of hypervariable region-3 (HVR-3) of the Spike (S)-1 gene was performed, followed by phylogenetic analysis to determine the circulating IBV genotypes. Four lineages appear to coexist in this region, including the GI-13 or 4/91 IBV (31%), GI-16 or CK/CH/LDL/97I IBV (28.6%), GI-1 or Mass IBV (19%), and GI-23 or Middle East IBV (21.4%). The latter lineage include two subgroups: IS/720/99 IBV (16.7%) and IS/Variant2/98 IBV (4.7%). Some of the detections made in the 4/91 and Mass lineages are expected to belong to the vaccine strains. Lineages without a homologous vaccine in use (CK/CH/LDL/97I and Middle East) represent 50% of the isolates recovered in this study. Based on identity with the vaccine sequences, field observations, and frequent detection, these two lineages appear to be out of coverage of the IBV vaccines used in Saudi Arabia. This is the first time to identify Middle East lineage (IS/720/99 IBV and IS/Variant2/98 IBV) in the Eastern Region of Saudi Arabia.


2020 ◽  
Vol 7 (2) ◽  
pp. 79 ◽  
Author(s):  
Matteo Legnardi ◽  
Claudia Maria Tucciarone ◽  
Giovanni Franzo ◽  
Mattia Cecchinato

RNA viruses are characterized by high mutation and recombination rates, which allow a rapid adaptation to new environments. Most of the emerging diseases and host jumps are therefore sustained by these viruses. Rapid evolution may also hinder the understanding of molecular epidemiology, affect the sensitivity of diagnostic assays, limit the vaccine efficacy and favor episodes of immune escape, thus significantly complicating the control of even well-known pathogens. The history of infectious bronchitis virus (IBV) fits well with the above-mentioned scenario. Despite being known since the 1930s, it still represents one of the main causes of disease and economic losses for the poultry industry. A plethora of strategies have been developed and applied over time, with variable success, to limit its impact. However, they have rarely been evaluated objectively and on an adequate scale. Therefore, the actual advantages and disadvantages of IBV detection and control strategies, as well as their implementation, still largely depend on individual sensibility. The present manuscript aims to review the main features of IBV biology and evolution, focusing on their relevance and potential applications in terms of diagnosis and control.


2021 ◽  
Author(s):  
Nahed Yehia ◽  
Fatma Amer ◽  
Abdelhafez Samir ◽  
Mohamed Samy ◽  
Ahmed Sedeek ◽  
...  

Abstract Poultry production has affected by multiple respiratory disease triggering serious economic losses in Egypt. In this study, the situation and genetic evolution of respiratory disease in Egypt during 2020 were studied. We collected 53 samples from infected flocks suffered from respiratory signs and variable mortality rate from nine governorates in Egypt during 2020. The collected samples were examined for detection of respiratory disease viruses (Avian influenza virus (AIV), Infectious bronchitis virus (IBV), and Newcastle disease virus (NDV)) by rRT-PCR. The single infection was confirmed in 90.6% (37.7% I. B, 30.2% AIV (H5N8), 9.4% I. B and 5.7% NDV) and co-infection of HPAIV (H5N8) + I.BV and LPAIV (H9N2) +IBV were detected in 3.8% in nine governorates. The HA gene of HPAIV (H5N8) were cluster to clad 2.3.4.4.1b in new branch with characteristic specific mutations especially in T140A in antigenic site A and R72S in the receptor binding site when comparing with A/duck/Egypt/F446/2017 with low A.A identity percent with vaccinal strains (H5N1 and H5N2) reach to 91.9-94% and 84.6% respectively. The HA gene of AIV (H9N2) were belong to A/quail/Hong Kong/G1/97-like virus clustered with group B with specific mutation (212I) that may be effect on human transmission of the virus. The HVRs of S1 gene of IBV cluster to GI23 (Egy Var I) clad with multiple mutation in HVR1, HVR2 when comparing with IBV/CU/4/2014 and low identity percent (68.3%-78.8%) with vaccine strains (H120, M41, 4/91). In conclusion, the respiratory disease continues circulate and rapidly evolved in Egypt during 2020.


Sign in / Sign up

Export Citation Format

Share Document