scholarly journals Application of Agricultural Waste for the Adsorption of Pharmaceutical Pollutants in Wastewater: A Review

Author(s):  
E.O Dada

Modernization and growth in population have contributed to the continuous release of new and emerging chemical compounds (such as pharmaceuticals) into water sources. The importance of pharmaceuticals can never be overemphasized due to their great potential and effectiveness in the body system. However, improper management of their effluents which eventually ends up in the water in our environment has always been an issue of great concern. This led to the need for the purification of the contaminated water (wastewater). Over time, many methods of wastewater purification have been employed in the treatment of the wastewater, but yet, adsorption has been found and established to be an optimum option for the task due to its effectiveness, availability, affordability, and durability. Adsorption is a separation technique that takes place on the surface of a material or through a component called an adsorbent, and the effectiveness of this method is a function of the adsorbent capacity, contact time, temperature, and other related parameters. For adsorbent preparation, many materials have been considered and proven to be active and effective. However, in this paper, synthesizing agricultural wastes as the adsorbent in the adsorption of pharmaceutical effluents is reviewed with references, to further attest to its prominence in adsorption.

Author(s):  
Seroor Atalah Khaleefa Alia ◽  
Dr. Mohammed Ibrahimb ◽  
Hussein Ali Hussein

Adsorption is most commonly applied process for the removal of pollutants such as dyes and heavy metals ions from wastewater. The present work talks about preparing graphenic material attached sand grains called graphene sand composite (GSC) by using ordinary sugar as a carbon source. Physical morphology and chemical composition of GSC was examined by using (FTIR, SEM, EDAX and XRD). Efficiency of GSC in the adsorption of organic dyes from water was investigated using reactive green dye with different parameters such as (ph, temperature, contact time and dose). Adsorption isotherm was also studied and the results showed that the maximum adsorption capacity of dye is 28.98 mg/g. This fast, low-cost process can be used to manufacture commercial filters to treat contaminated water using appropriate engineering designs.


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (>0.9), which suggests too, that the adsorption fitted into the isotherms considered.


Heritage ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 2480-2494 ◽  
Author(s):  
Marie Godet ◽  
Gauthier Roisine ◽  
Emmie Beauvoit ◽  
Daniel Caurant ◽  
Odile Majérus ◽  
...  

Bernard Palissy is a French Renaissance ceramist renowned for his masterpieces called Rustiques Figulines on which dozens of glazes of different chemistries (and thus firing behaviors) coexist harmoniously. This study aims at gathering information on the master procedure -never revealed- by investigating the body-glaze interface region (focusing on iron-colored honey transparent glaze-white body system). Optical and electron microscopies including transmission electron microscopy (TEM) are used to characterize the micro and nanostructure of both archaeological and replicas interfaces elaborated in controlled conditions (firing time, cooling rate, addition of Al in the glazing mixture). Both types of interfaces are comparable: a modified paste area from which are growing a relatively continuous layer of interfacial crystals identified as lead feldspars (K,Ca)PbAl2Si2O8 micro-sized single-crystals incorporating mullite 3Al2O3.2SiO2 nano-sized single-crystals. Modification of the firing parameters and removal of Al from the glazing mixture change essentially the interface extension and the micro-crystals morphology. By comparing archaeological and replica interfaces and considering previous studies, we can now state that Palissy was very likely adding clay (Al) in his frit. Moreover, he was probably working with a firing time of more than 1 h followed by slow cooling in the oven.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mulu Berhe Desta

Adsorption of heavy metals (Cr, Cd, Pb, Ni, and Cu) onto Activated Teff Straw (ATS) has been studied using batch-adsorption techniques. This study was carried out to examine the adsorption capacity of the low-cost adsorbent ATS for the removal of heavy metals from textile effluents. The influence of contact time, pH, Temperature, and adsorbent dose on the adsorption process was also studied. Results revealed that adsorption rate initially increased rapidly, and the optimal removal efficiency was reached within about 1 hour. Further increase in contact time did not show significant change in equilibrium concentration; that is, the adsorption phase reached equilibrium. The adsorption isotherms could be fitted well by the Langmuir model. The value in the present investigation was less than one, indicating that the adsorption of the metal ion onto ATS is favorable. After treatment with ATS the levels of heavy metals were observed to decrease by 88% (Ni), 82.9% (Cd), 81.5% (Cu), 74.5% (Cr), and 68.9% (Pb). Results indicate that the freely abundant, locally available, low-cost adsorbent, Teff straw can be treated as economically viable for the removal of metal ions from textile effluents.


2021 ◽  
Author(s):  
Sutaria Devanshi ◽  
Kamlesh R. Shah ◽  
Sudipti Arora ◽  
Sonika Saxena

Biotechnological tools engaged in the bioremediation process are in reality, sophisticated and dynamic in character. For specialized reasons, a broad variety of such devices are employed to produce a safe and balanced environment free of all types of toxins and so make life simpler for humans on planet Earth. Actinomycetes is one of these extremely important and functionally helpful groups. They can be used for a variety of bioremediation objectives, including biotransformation, biodegradation, and many more. Actinomycetes are one of the most varied groups of filamentous bacteria, capable of prospering in a variety of ecological settings because to their bioactive capabilities. They’re famous for their metabolic diversity, which includes the synthesis of commercially useful primary and secondary metabolites. They produce a range of enzymes capable of totally destroying all of the constituents. They are well-known for their ability to produce bioactive secondary metabolites. Members of various genera of Actinomycetes show promise for application in the bioconversion of underutilized urban and agricultural waste into high-value chemical compounds. The most potential source is a wide range of important enzymes, some of which are synthesized on an industrial scale, but there are many more that have yet to be discovered. Bioremediation methods, which use naturally existing microbes to clear residues and contaminated regions of dangerous organic chemicals, are improving all the time. In the realm of biotechnological science, the potential of actinomycetes for bioremediation and the synthesis of secondary metabolites has opened up intriguing prospects for a sustainable environment.


Author(s):  
Shubhangi Karanje

 The concept of beauty and cosmetic is as old as mankind and civilization. Cosmetic product for females like sun scream, lipsticks, facial cream, nail paints, deodorants and sindoor are very popular in the market. They are generally the combination of various chemical compounds and some of them are derived from natural sources and others from synthetic method. In females regular external application of cosmetic products to improve beauty and appearance of a person which increases the self confidence. Most of the cosmetic products contains hazardous chemicals like talcum, parabens, coal, tar dye, phthalates, fragrance, tri ethanolamine and use of some heavy metals e.g. lead, mercury etc. Peoples are not aware of adverse effect of regular use of cosmetic products it accumulates in the body can cause contact dermatitis, skin disorders, allergies, hair loss and effect on nails etc. In Ayurveda cosmetic toxicity is compare to cumulative type of toxicity, so the cumulative type of toxicity is similar to Dushi Visha describes in Ayurveda.


2020 ◽  
Vol 8 (2) ◽  
pp. 176
Author(s):  
Fanny Thresia Yunus ◽  
Ari Suwondo ◽  
Martini Martini

Indonesian people have long used garlic as traditional medicine because it contains various chemical compounds that are beneficial to the body. In this study identification of garlicin and kuersetin compounds in garlic as an antibacterial. This study requires 500 grams of garlic each in wet preparations consist of fine garlic and garlic extract, and dry preparation consists of garlic powder. In addition, this research requires 2,1 liters of 96% ethanol. Garlic is dried at 400C with TMI Vacuum Oven and extracted at 250C. Garlic powder is made using Krisbow dry cabinet with a temperature of 1000F and a pressure of 10 Pa. Garlisin content was identified by GCMS Shimadzu TQ8030 and FTIR Perkin Elmer Spectrum Two UATR, while identification of quercetin using Shimadzu HPLC type UFLC. The result shows that the compound garlicin (C6H10S2) was found in the three samples with identical similarity levels. In addition, the three samples showed differences in kuersetin content. The highest kuersetin content was 458.729 ppm garlic extract while the lowest kuersetin content was 81.181 ppm fresh garlic. Both of these compounds have potential as antimicrobial compounds.


2014 ◽  
Vol 58 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Aneta Strachecka ◽  
Grzegorz Borsuk ◽  
Jerzy Paleolog ◽  
Krzysztof Olszewski ◽  
Milena Bajda ◽  
...  

Abstract Body-surface chemical compounds were studied in 1-day-old nest workers and foragers both in Buckfast and Caucasian bees. The workers of these two age-castes were sampled twice in each of two consecutive years. Body-surface lipids were determined by means of gas chromatography, with a GCQ mass spectrometer. Protein concentrations and activities on the body surface were examined in bee cuticle rinsings obtained from worker bees according to the methods of Lowry, of Anson, and of Lee and Lin. Protease and protease inhibitor activities were determined. Polyacrylamide gel electrophoresis was performed. Caucasian bees, particularly foragers, had more lipids, but Buckfast bees (two age-castes) had more proteins on their body surfaces. A total of 17 alkane types (C17 - C33), 13 alkene types (C21 - C33), 21 esters (C12 - C32), and a phenol (C14) were detected in both races. Alkene C33 was detected only in Caucasian bees. More alkanes, esters, and phenols were found in Caucasian 1-day-old nest workers and foragers than in these age-castes of Buckfast bees. The protein concentration and protease inhibitor activities were lower in Caucasian bees that had higher protease activities. These values corresponded with specific numbers and widths of the electrophoretic bands.


Author(s):  
J Gallardo-Alvarado ◽  
H Orozco-Mendoza ◽  
R Rodríguez-Castro

In this contribution, the kinematic angular and linear third-order properties, also known as jerk analysis, of a multi-body system are determined applying the concept of helicoidal vector fields. The reduced acceleration state, or accelerator, of the body of interest, with respect to a reference frame, is obtained as the time derivative, via a helicoidal field, of the velocity state, also known as the infinitesimal twist. Following that trend, the reduced jerk state, or jerkor, is obtained as the time derivative of the accelerator. The computation of the instantaneous centre of jerk, with its corresponding ellipsoid of jerk, is also included. The expressions thus obtained are extended systematically to multi-body systems. Two numerical examples are provided in order to illustrate the potential of the presented method.


2017 ◽  
Vol 18 (2) ◽  
pp. 460-472 ◽  
Author(s):  
E. Shokri ◽  
R. Yegani ◽  
B. Pourabbas ◽  
B. Ghofrani

Abstract In this work, montmorillonite (Mt) was modified by environmentally friendly arginine (Arg) and lysine (Lys) amino acids with di-cationic groups for arsenic removal from contaminated water. The modified Mts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, zeta potential and thermal analysis. The adsorption of As(V) onto modified Mts as a function of initial As(V) concentration, contact time and solution pH was investigated. The removal efficiency was increased with increasing the As(V) concentration and contact time; however, it was decreased with increasing solution pH. The maximum As(V) adsorption capacities of Mt-Arg and Mt-Lys were 11.5 and 11 mg/g, respectively, which were five times larger than pristine Mt. The high adsorption capacity makes them promising candidates for arsenic removal from contaminated water. The regeneration studies were carried out up to 10 cycles for both modified Mts. The obtained results confirmed that the modified adsorbents could also be effectively used for As(V) removal from water for multiple adsorption – desorption cycles.


Sign in / Sign up

Export Citation Format

Share Document